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Resumo

A comunicação verbal desempenha um papel muito importante na interação homem-homem.
Assim, possui também o potencial de desempenhar um papel importante na interação homem-
máquina, especialmente se não for restringida a um único domı́nio.

Neste trabalho, abordamos um dos principais componentes dos sistemas de diálogo,
geração da lı́ngua natural, para estudar como é afectado em comunicação de domı́nio aberto.
Usamos métodos estatı́sticos, nomeadamente modelos de tópicos e aprendizagem profunda,
e abordamos a arquitetura tradicional de geração optimizando o planeamento de frases e
realização de superfı́cie, como tarefas diferentes.

Utilizamos as legendas de documentários para modelar aspectos especı́ficos de domı́nio e
um conjunto de dados com um vocabulário grande para atender às preocupações linguı́sticas
independentes do domı́nio. Usamos a Alocação Latente de Dirichlet para descrever a as
relações finas do corpus especı́fico do domı́nio e para o vocabulário grande usamos uma
representação de “word embeddings” (providencia relações geométricas com semântica).

As tarefas de geração de lı́ngua natural são modeladas como problemas de aprendizagem
profunda. Especificamente, o planeador de frases é implementado com redes neuronais feed-
forwad e convolucionais. O micro-planeamento e a realização de superfı́cie são implementados
com redes neuronais recorrentes, que têm em conta os aspectos sequencias da linguagem.

Avaliamos o nosso método de construção de corpus através da detecção de diferentes
segmentos de cenas e como esses parâmetros afetam a construção dos modelos de tópicos.
Avaliamos o planeador de frases usando a similaridade de coseno e a realização de superfı́cie
com análise subjetiva. Os resultados sugerem que o planeador de frases aprender a mapear um
espaço genérico independente do domı́nio para um espaço especı́fico de domı́nio. A qualidade
dos resultados da realização da superfı́cie deve ser considerada preliminar.





Abstract

Verbal communication plays a very important role in human-human interaction. It has the
potential to also play a very important role in human-machine interaction, especially if it is not
restricted to a single domain.

In this work, we approach one of the key components of dialogue systems, natural lan-
guage generation, to study how this component is affected by open domain communication.
We rely on statistical methods, namely topic models and deep learning, and approach the tra-
ditional generation architecture by optimizing the sentence planning and surface realization,
as different tasks.

We use documentaries’ subtitles to model domain-specific aspects and a large vocabulary
dataset to account for domain-independent linguistic concerns. Latent Dirichlet Allocation is
used for describing the fine-grained relationships in the domain-specific corpus, while word
embeddings (providing geometric semantic relations) are used to represent the large vocabu-
lary.

Natural language generation tasks are modelled as deep learning problems. Specifically,
sentence planning is implemented with feedforwad and convolutional neural networks. Micro-
planning and surface realization are implemented with recurrent neural networks, to account
for sequential aspects of language.

We evaluate our corpus construction method by analysing different time boundaries in
the scene detection algorithm and how those parameters affects the topic models. We evalu-
ate sentence planning using cosine similarity and surface realization with subjective analysis.
Our results suggest that the sentence planner can learn a mapping from the generic domain-
independent space into the domain-specific space. The quality of surface realization results
must be considered preliminary.
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1Introduction

Verbal communication, one of the modalities of human-human communication, is a very im-
portant characteristic of human interaction, as it allows humans to communicate with each
other in a very rich (possibly ambiguous) way. Thus, human interaction is shaped to a great
extent by verbal communication: this type of communication allows humans to express needs,
knowledge, beliefs, among others, with each other. Thus, having a very important role in
human-human interaction, verbal communication has, arguably, a very important role in
human-machine interaction, as it allows humans and machines to communicate with each
other in a natural way, resembling human-human interaction. Arguably, dialogue is an impor-
tant characteristic of human-human interaction and human-machine interaction, as it provides
a natural interaction between the interlocutors and listeners. Therefore, the ability to commu-
nicate in any domain provides a natural way for human and machines to communicate and
collaborate to achieve a task.

Intrinsically, dialogue requires the interlocutor to be able to communicate about a certain
subject within a specific context. Thus, Dialogue Systems (DSs) have been, usually, developed
to fit a given domain (Litman and Silliman 2004; Ferguson and Allen 1999; Ferguson, Allen, and
Miller 1996), i.e., DSs are, usually, developed to perform a well-defined task on a well-defined
domain, which implies that these systems are not developed for addressing open domain com-
munication. Therefore, traditional approaches to DS, and its components, focus on accomplish
a specific task, covering only the vocabulary, and consequently the semantic interpretation, of
the domain in question and not generalizing for new domains, in fact, usually, these systems
require hand-crafted rules for the specific domain. However, to consider an open domain com-
munication the system must be able to generalize to new domains and talk about new concepts.

Therefore, we consider that for a system to be truly open domain, it must be able to com-
municate about any domain, learn more about a given domain, and learn and adapt to new
domains (this does not imply necessarily that the system is aware of the domain a priori). A
true open domain system has not yet been achieved and as such we will limit our work to
studying methods for communicating about any domain. In addition, every system is, ulti-
mately, designed to achieve a goal and to accomplish a certain task. However, in contrast with
the traditional DS, where the task is limited to the domain, an open domain DS can be applied
to any task which requires verbal communication. Thus, an open domain DS does not have a
specific task, rather, the task is the implicit goal of communication and interaction.



2 CHAPTER 1. INTRODUCTION

Addressing the open domain problem is a concern of the scientific community for the past
years, as having domain-independent methods that can address an open domain environment
would allow systems to interact with humans regarding any domain. With the development
of deep learning (and other statistical) techniques, the ability to develop increasingly larger
models that deal with larger vocabularies and semantics will be possible, as more data will be
available. Thus, an open domain system must be able to learn new concepts and its interpre-
tation in different contexts, modelling the fine-grained relations of words in different contexts,
i.e., concepts are intrinsically connected to one or more topics and its interpretation comes
from the context, where the topic is inserted. A practical example is how humans learn, we
learn about different domains but domains can have new concepts, for instance in the context
of mineralogy, a new previously unseen mineral being discovered, and is very important the
ability to generalize and learn new concepts. The practical applications for open domain DS
are numerous: from being deployed in a call center and allowing a natural and flexible way to
communicate, to space probes having the ability to describe what they encounter in different
expeditions.

1.1 Goal

A DS is usually decomposed into different modules, in a sequential or parallel (Ferguson and
Allen 1999) architecture. The generic architecture of a DS is depicted on Figure 1.1, while a well
known architecture, TRIPS, is depicted on Figure 1.2, which uses a parallel approach to the
DS agent. As we address the problem of how to communicate, our main focus is the natural
language generator, namely addressing the generation problem in an open domain context, i.e.,
we approach the generation problem in a domain-independent way. The generation module
is the bottleneck in a DS for communicating in an open domain way, as it is responsible for
deciding how should the system’s goal be mapped into a utterance that best represents the
goal, i.e., the Natural Language Generation (NLG) component is responsible for determining
“how to say” the intention of the system.

Therefore, the NLG component of the DS is our main focus, as it is responsible for map-
ping the system’s intentions and goals into natural language. Furthermore, we study statistical
approaches to generation by approaching both sentence planning and surface realization in a
statistical manner. In addition, we will not consider any other component from the DS architec-
ture, the DS is only regarded as relevant background for the generation problem application.

Finally, to consider open domain and communicate about any domain, domain adaptation
and learning is crucial, as it allows the system to learn and adapt to new, previously unseen,
domains or transfer the learning method. This way, domain-independent methods for the
generation problem are our main focus.
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Figure 1.1: Generic Pipeline Spoken Dialogue System architecture.

Figure 1.2: TRIPS architecture (Ferguson and Allen 1999).
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1.2 Document structure

The document outline is as follows. In chapter 2 we provide the background for DSs, topic
models, and deep learning. In chapter 3 we discuss the state of the art in NLG and the framing
of NLG in the open domain context, as well as which approaches are suitable for addressing
the open domain problem. Next, in chapter 4 we describe our corpus and how we build our
own corpus from subtitles, as well as analysing the results.

In chapter 5, we describe an overview of our approach to open domain in the generation
process and focus on the sentence planner module. Moreover, we describe what is our planner,
present the experimental setup and present and discuss the results of sentence planning. In
chapter 6, we focus on micro-planning and surface realization. In addition, we describe both
components, present the experimental setup, and discuss the results of the realization. Finally,
in chapter 7, we present our conclusions and directions for future work.



2Background

In this chapter, we provide the reader the necessary background in deep learning, topic mod-
els, and dialogue systems, focusing on Dialogue Management (DM) in the latter. The NLG
component is, usually, inserted in a DS and is the module responsible for deciding which is the
utterance that best represents what does the system want to say. Thus, we start by discussing
what is a dialogue systems and how it is, usually, built. Then, we focus on DM, as this compo-
nent has a direct interaction with the generation module and is relevant background, specially
considering an open domain environment.

Furthermore, we discuss what is a topic model and a specific topic model, LDA. This is
relevant background for our approach to the domain-independent communication, namely to
refine utterances with the context of the domain where it is inserted. Finally, we discuss what is
deep learning and which approaches exist. This background is relevant in the context of open
domain, as recent methods using deep learning allow to use the power of learning arbitrarily
long sequences, which can be regarded as learning the sequence of words in a sentence for
instance.

2.1 Dialogue Modelling Background

In this section, we address the concept of dialogue system, the components that constitute these
systems and which are addressed in this work, as well as the existing approaches to build a
DS (section 2.1.1). Then, we discuss dialogue management (section 2.1.3) and the approaches
to build a dialogue manager (sections 2.1.3.1 to 2.1.3.6). We also present three well-known
architectures, relevant in this field (section 2.1.2). Finally, the approaches to dialogue manage-
ment in the context of open domain are discussed (section 2.1.4).

A DS is, roughly, a system whose goal is to interact with humans in a natural way. Usually,
a DS is built with the goal of providing a way of human-machine interaction to be possible
and natural (as fluid as possible). A DS is often characterized by its modality (text-based, spo-
ken, graphical, multi-modal), and its initiative (system initiative, user initiative, mixed), device
(where it is deployed), among others, and traditionally it is composed by five modules (these
are illustrated in Figure 2.1). These modules are responsible for their own tasks and can run
asynchronous from each other. Nonetheless, usually, these modules communicate with their
“neighbours” in the architecture, this way providing their output as input of other modules.
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These modules are, usually, an input decoder, a language understanding unit, a DM, an output
generator, and an output renderer. Although the focus of this work is not the whole DS, this
architecture is relevant as the context of this thesis.

Figure 2.1: Generic Pipeline Spoken Dialogue System architecture.

Dialogue systems have a vast number of applications, as already mentioned (section 1.1),
whether they are academic or industrial, including providing information, tutoring, service
providing, advising, conversational partner, narrating. Usually, these systems are deployed
in commercial systems, such as voice menus or call centers, mobile applications, such as Siri
(Apple) or Cortana (Microsoft).

As previously mentioned, one of the characteristics of these systems, is its initiative. Re-
garding this characteristic, one can argue that a system that interacts with humans, especially
if an open domain one, must be reactive and proactive, but, more importantly, it must be able
to know when to switch between giving the user the initiative or taking itself the initiative. A
system that always has the initiative, or always gives the initiative to the user, will not com-
municate in a natural way. In fact, if the initiative is the system’s, usually there are constraints
of vocabulary and grammar as the system is expecting a fixed dialogue flow (Lee et al. 2010),
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which implies that the dialogue is not natural and, thus, not well suited for open domain. On
the other hand, a user initiative design, although it has advantages over system initiative and
the system may sometimes ask questions to confirm slots, this initiative constraints the system
to be reactive, since the proactive part is only to confirm slots. As a conclusion, if one wants
a system that is able to “talk” about any concept, it must not be constrained as it would be in
these two cases.

As a consequence, mixed initiative is the one that resembles human interaction, as it allows,
not only taking turns, but also the initiative in the dialogue to be shared between humans and
machines. This way, an open domain system considering human-machine interaction must be
capable of, at different times, being proactive and reactive, among other characteristics.

A DS is an agent, as it is situated in an environment, it receives sensory input from the
environment, and it produces actions that affect the environment. Thus, it is important to note
that one of the key concepts of these systems is the DM, as this component is responsible for a
number of tasks essential to the interaction with the environment. The DM is the component
responsible for deciding “what to say” and its tasks consist of maintaining and updating the
underlying context of the dialogue, deciding what should be the next action, providing an
interface with back-end/task model. Another task the DM is responsible for, is providing an
expectation for interpretation of communicative behaviour (perceived sensory input), as well
as deciding what should be the next action. Thus, the DM has a significant role in these systems
and, consequently, it is further discussed in section 2.1.3.

The different approaches to build dialogue systems are presented in section 2.1.1.

2.1.1 Building Dialogue Systems

Usually, dialogue systems are divided into two different approaches regarding the system’s
purpose (Larsson 2005). The first, is to consider that the system’s purpose is one of interface
engineering (as Larsson notes, the “engineering” view), having task-specific functionality and
user-focused design, analogously to what command-line or menu-based graphical interfaces
do. Briefly, it coordinates with the user in order to accomplish a task by deciding what should
be the action for the current turn, given the context, input, and goals. The second, is to consider
the DS as a simulation, i.e., DS is simply an “interface” between the user and the back-end of
the system. This way, the system completely fulfills the theory of human language use and
understanding, able to communicate with the user. Considering, then, which utterances must
be produced to be natural to users and to be understandable by the back-end.

Examples of these approaches are presented next. For the first approach, significant exam-
ples of systems developed are ARTIMIS (Sadek et al. 1997) and TRAINS (Ferguson et al. 1996).
The first was developed in the context of cooperative spoken dialogue, implementing a for-
mal theory of interaction. The second was focused in practical spoken dialogue (conversation
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towards accomplishing a specific task) and was developed in the trains domain, using mixed-
initiative planning. For the second approach, significant examples of developed systems are
MITRE’s Midiki toolkit (MITRE Corporation 2005) and SUNDIAL project (McGlashan et al.
1992).

Concluding this subject, it is important to note one of the most important DSs architecture,
TRIPS (Ferguson and Allen 1999). This architecture is further discussed in section 2.1.2.2. In
addition, in section 2.1.2, architectures for DM are discussed in terms of the contributions of
each approach and what was the motivation behind each of them.

2.1.2 Architectures

DS architectures that use different DM strategies are exemplified in TRINDI (Larsson and
Traum 2000), TRIPS, and COLLAGENThese architectures also describe how the DM interacts
with the generation module. These approaches are relevant in statistical, plan-based and agent-
based approaches, respectively. TRIPS, in particular, is one of the best known architectures and
one of the most important. In sections 2.1.2.1, 2.1.2.2, and 2.1.2.3, we present these architectures.

2.1.2.1 TRINDI

TRINDI (Larsson and Traum 2000) is an architecture, as well as a toolkit, for building DS, where
the dialogue manager is based on the theory of information state and dialogue move Traum
and Larsson (2003) (discussed in section 2.1.3.6). This approach provides a toolkit for the for-
malization of the concept of information state, which in turn allows dialogue theories to be
formalized and implemented. It is important to note that the factor that distinguishes this ap-
proach is the update of the information state with information related to observations and the
execution of dialogue moves. Furthermore, this approach is often associated with the statistical
DM approach. Figure 2.2 presents the architecture of TRINDI.

2.1.2.2 TRIPS

The TRIPS architecture (Ferguson and Allen 1999) is one of the most well known architectures
and successful system in DS. This system is the successor of TRAINS (section 2.1.3.3) and is
a continuation to the dialogue-based approach (M. Ferguson et al. 1996) to build a collabo-
rative planning assistant, adding complex scenarios so that humans require the system’s help
to effectively solve the problems. The components of TRIPS are divided into three modules:
interpretation, generation, and behaviour. Each of these modules is controlled by a manager
component: interpretation manager, generation manager, and behaviour agent, respectively.
Each one of these components runs independently and asynchronously. This allows the sys-
tem to interpret the input and plan a response at the same time. This division also allows the
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Figure 2.2: TRINDI architecture (Larsson and Traum 2000).

system to be formulated as a mixed-initiative one. An important note is that we focus on the
generation module, without taking into consideration how the NLG module interacts with the
behaviour and interpretation modules.

In addition, this approach is regarded as a collaborative plan-based (see section 2.1.3.3 for
more regarding plan-based approaches) approach, also using agents. An illustrative figure of
this architecture is presented in figure 2.3.

2.1.2.3 COLLAGEN

The COLLAGEN architecture (Rich and Sidner 1997) is an agent-based approach (see section
2.1.3.4) using well-established principles from computational linguistics, particularly shared
plans (Grosz and Sidner 1990), discourse structure (Grosz and Sidner 1986), among others.
This approach regards the problem-solving layer as an user-interface “middleware”, using
GUIs, and focusing on dialogue modelling (figure 2.4). Therefore, this approach can be re-
garded as both a (collaborative) agent-based and plan-based approach, as it uses principles of
computational linguistics, an user-interface with an agent in the background, and planning.
Additionally, this architecture supports mixed-initiative and has been applied to various areas,
such as, air travel planning, email reading and answering, among others.
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Figure 2.3: TRIPS architecture (Ferguson and Allen 1999).

Figure 2.4: COLLAGEN architecture (Rich and Sidner 1997).
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2.1.3 Dialogue Management

As already mentioned, the dialogue manager has a very important role in a DS. The dialogue
manager is responsible, primarily, for maintaining and updating the context (e.g. the history
of the interactions), deciding what should be the next action (what should be said), provide an
interface with the back-end model, and provide expectations for interpretation.

DM has, thus, a very important role when considering an open domain environment, even
though it is not the focus of this work. Thus, understanding the different approaches to this
problem is important, namely, state-based, frame-based, plan-based, collaborative agents, and
statistical approaches (sections 2.1.3.1 to 2.1.3.6, respectively).

As noted by Bui (2006), there are several approaches to build models for DM. Among these
approaches, one can distinguish state-based, frame-based, agent-based, plan-based, statistic, as
discussed in the literature (McTear 2002; Xu et al. 2002). The aforementioned approaches are
not mutually exclusive and often include common features from each other. In accordance
with Bui (2006), the approaches that are described are state-based, frame-based, statistical,
plan-based and agent-based.

2.1.3.1 State-based

This approach is the simplest one to model dialogue. In this approach, the dialogue consists of a
finite sequence of predetermined steps, where the flow is to take the user through these steps in
order to accomplish what is intended. This approach is, briefly, an automaton where the states
represent the internal state of the dialogue and the transitions are the utterances produced by
the user.

2.1.3.2 Frame-based

Frame-based approaches are, in a sense, extensions of the state-based approach and are de-
veloped to deal with some of the disadvantages of the latter, namely, their lack of flexibil-
ity. These approaches, instead of using a predefined sequence of steps, they build the model
based on slot-filling, i.e., finding a predetermined set of information and fill the slots (simi-
lar to template-based approaches in NLG). Thus, the flow of the dialogue is not determined
a priori (as in state-based), but depends of the input (human utterances) as its content is what
determines how to fill the slots. Usually, these systems ask questions in order to fill slots.

In contrast with the state-based approach, frame-based approaches allow mixed-initiative
(in fact, they allow it only to some degree) and allow more natural dialogues, as the dialogue
is not fixed in a sequence of steps, rather the utterance depends of the human utterance.
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These systems have been deployed in diverse applications, such as theatre booking sys-
tems (Hulstijn et al. 1996) and train timetable enquiry systems (van Zanten 1996). In order to
allow more complex dialogues, other variations of this approach were developed, including
versions that make use of schema and agendas, task structure graphs, blackboards, and oth-
ers (Bui 2006). This way, attempts at achieving generic dialogue modelling capabilities were
made. An example is the RavenClaw DM framework (Bohus and Rudnicky 2009).

2.1.3.3 Plan-based

These approaches, usually, aggregate features of various fields, such as, speech act theory, ar-
tificial intelligence planning, plan-based theory of speech acts – e.g. the work of Cohen and
Perrault (1979) speech act theory – or theory of collaborative actions. Thus, considering these
aspects, this approach regards human communication as the objective of achieving a given
goal (through planning). Utterances are, thus, treated as speech acts, where those acts are part
of a plan. Therefore, the listener must identify this plan (the speaker’s intention) and give
a response in accordance with this plan, applying the theories of communicative action and
dialogue.

Two of the best known systems that follow this approach are the SUNDIAL project (Mc-
Glashan et al. 1992) and TRAINS-96 (M. Ferguson et al. 1996). These systems rely on the theo-
retical aspects already discussed and formulate the problem as planning. In addition, TRAINS
supports mixed-initiative planning.

2.1.3.4 Agent-based

Agent-based approaches regard dialogue as a collaboration between agents and humans in
order to solve a given problem or complete a given task. In order to promote this collaboration,
it is important to note that there must be an interaction between the user and the agent and that
the latter is capable of reasoning about its own actions and beliefs. These approaches, usually,
incorporate Bratman’s theory of Belief, Desire and Intention (BDI) (Bratman 1987; Bratman,
Israel, and Pollack 1988). In contrast with the previous approaches, instead of focusing in
the structure of the task, this approach aims at capturing what motivates a dialogue and the
existing mechanisms in dialogue. Thus, the beliefs of the participants in the collaboration are
explicitly modeled. In addition, there are shared beliefs and, inserted in those beliefs, is the
common goal that must be achieved (solve the problem or complete the task in question).

It is important to note that these approaches consider the context (e.g. dialogue history)
when constructing the dialogue model. This way, they allow dialogue to dynamically flow
(and evolve) considering a sequence of steps that are related and constructed taking into con-
sideration the previous steps.
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Two of the best known systems following this approach are COLLAGEN (Rich and Sidner
1997) and TRIPS (Ferguson and Allen 1999) (also plan-based).

2.1.3.5 Reinforcement Learning

Before diving into statistical approaches, there is an important concept to be understood, Re-
inforcement Learning. This learning method has been widely used in DS and, with more rel-
evance, in NLG. Reinforcement Learning (RL) consists of learning how to map situations to
actions so as to maximize a (numerical) reward signal (Sutton and Barto 1998). Thus the learner
must discover which actions will give the best reward by trying them. In this sense, two of the
most important features of RL are trial-and-error search and delayed reward. Moreover, tradi-
tionally RL is composed of four subelements, (i) a policy (how the agent behaves at a given
time), (ii) a reward function (a, usually numerical, value mapped from the perceived state),
(iii) a value function (in contrast with the reward, it specifies what is good in the long run), and
(iv) a model (that of the behaviour of the environment). As noted by Sutton and Barto (1998),
efficiently estimating values is essential for the RL algorithms, thus usually the methods for
estimating values are focused in estimating value functions, although solving these problems
with others methods (e.g. simulated annealing) is possible. Thus, RL is an approach to un-
derstand and automate goal-directed learning as well as decision-making. More formally, in
this problem there is an agent and the environment with which the first interacts and there
are three key concepts: (1) a set of environment states S, (2) a set of agent actions A, and
(3) reinforcement signals or rewards R (typically numerical).

As such, the interaction between the agent and the environment can be defined as a se-
quence of time steps t = 0, 1, 2, . . . (here, these are discrete for the sake of argument). At each
step t, the agent observes the environment and receives a state representation st, such that
st ∈ S, and selects an action at, such that at ∈ A. In the next time step, as a part of the conse-
quence of the action (another consequence is the change in the environment, not considering
sensing acts), the agent receives a reward (traditionally numeric) rt+1, such that rt+1 ∈ R and is
in a new state st+1. Thus, at each time step the agent must map states to probabilities of select-
ing each possible action and its goal is to maximize the reward received over the long-run. This
mapping is formalized as the policy and is, commonly, denoted as πt, where πt(a|s) is, in fact,
the probability P (at = a|st = s). Thus, the goal of RL methods is to determine how the agent
changes its policy as a consequence of the interactions with the environment (its experience).
As mentioned, the goal of the agent is to maximize, not the immediate reward, but the cumula-
tive one in the long run, therefore it is necessary to determine the model of optimal behaviour.
In this sense, the simplest one is thinking about optimising the reward for the next n steps

Σn
t=0rt (2.1)

However, this implies that the agent will always act according to the same policy, only limiting
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how far ahead it considers when choosing an action (the history of actions h). Thus, in order
to take the long-run reward into account, the concept of discount, γ, is introduced and rewards
received from the “future” are discounted according to such discount factor (0 ≤ γ ≤ 1). More
formally, the model of optimal behaviour, considering the discount factor and the long-run
reward, is defined as

Σ∞t=0γ
trt (2.2)

In RL, there is an important property an environment state can possess, the Markov prop-
erty. An environment state has this property if and only if the conditional probability distri-
bution of the future states dependents exclusively of the present state, this is, the transition
from the current state to the next depends only of the current and none of the past states or
actions (i.e., they are independent). One can argue that it must successfully comprise the pre-
vious states (no more than the total past history states) in a state without explicitly having such
information. More formally,

P (rt+1 = r, st+1 = s′|so, ao, r1, . . . , st−1, at−1, rt, st, at) ⇐⇒ P (rt+1 = r, st+1 = s′|st, at),∀s′,r,h
(2.3)

Notice the right side of equation 2.3 is not conditioned by the last reward rt: if the environment
has the Markov property, the next state depends exclusively of current action and state. This
property is important in RL due to decisions and values are, usually, a function of only the
current state. Considering this, when a reinforcement learning task satisfies this property, it is
considered an Markov Decision Process (MDP) (also has the delayed reinforcement property).
More formally, an MDP is defined as a 4-tuple < S,A, T,R >, S is a set of states, A is a set of
actions, T a state transition function T : S×A→ Π(S), where Π(S) is a probability distribution
over S and can be rewritten as T (s′, a, s) (the probability P (st+1 = s′|at = a, st = s) of the
transition from state s to the next state s′ with action a) and R is the reward function, formally
R : S×A→ R. Now, and having defined the model for optimal behaviour previously, it is clear
that the goal is to find a policy to maximise it. This is a well-studied topic and will be briefly
addressed here, see Sutton and Barto (1998), Kaelbling, Littman, and Moore (1996) for more
information. As mentioned before, one of the key elements of RL is the value function. This
allows the value expected from the reward to be computed (recursively). Usually, the notation
for the value function is V π(s). Moreover, given the policy π, it is the reward expected from the
state s to the terminal one st, using the Bellman equations it is defined as

V π(s) =
∑
a

γπ(s, a)
∑
s′

T (s′, a, s)[R(s′, a, s) + V π(s′)]

=
∑
a

γπ(s, a)Qπ(s, a).
(2.4)

This function is usually called state-value function for a given policy π and Q(s, a) gives the re-
ward for taking the action a in state s following the policy π, often called action-value function
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for a given policy π. Both these value functions can be estimated from the interaction with the
environment. Thus, one can define the optimal state-value function and optimal action-value
function, namely, using the Bellman optimality equation for the first and for the latter,

V ∗ = max
a

∑
s′

T (s′, a, s)[R(s′, a, s) + γV ∗(s′)] (2.5)

Q∗ =
∑
s′

T (s′, a, s)[R(s′, a, s) + max
a′

Q∗(s′, a′)] (2.6)

Then, the optimal policy is defined as

π∗ = arg max
a

Q∗(s, a) (2.7)

Next, it is necessary to learn (compute) the optimal policy. In order to do so, strategies to
update the value-action and strategies for action selection are necessary. One of the issues that
RL debates is exploitation vs exploration. This debate focuses on how the state space is traversed
to select an action. This is well covered in the literature, e.g. Young (1999), Sutton and Barto
(1998), and Kaelbling et al. (1996). Briefly, the problem is how to balance between the two
approaches, exploration, searching the complete state space and, for each action in each state, the
associated reward – e.g. dynamic programming based policy optimisation – and exploitation,
focusing on the state sequences of optimal and near optimal estimate of the value-action – e.g.
Sampling based policy optimisation (Monte Carlo methods).

Two of the best known strategies to update the value-action are State-Action-Reward-State-
Action (SARSA) and Q-learning. In the first strategy, the learning derives from interacting with
the environment and update the policy based on taken actions, an on-policy learning algorithm,
i.e., the new state-action value depends on the reward received after taking an action, the cur-
rent value of the state, and the value of the next state-action pair observed. Additionally, the
Q-value for a state-action is updated by an error, adjusted by the learning rate α, more formally:

Q(st, at)← Q(st, at) + α[rt+1 + γmax
a

Q(st+1, at])−Q(st, at)] (2.8)

In the second strategy, an off-policy learning strategy, the learning also derives from interacting
with the environment, although it updates the policy based on the optimal actions (maximum
reward of available actions). In contrast with SARSA, the new state-action value depends of
the optimal state-action pair of the next state, rather than the next state-action taken. There-
fore, SARSA learns the Q-values associated with taking the policy followed by itself, while
Q-learning learns the Q-values associated with taking the exploitation policy together with
following an exploration/exploitation policy.

Two of the best known strategies for action selection are ε-greedy and softmax. Here only
the first is presented for the sake of argument, as it is one of the most well known strate-
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gies. Strategies for action selection can be pure exploitation (e.g. always select the action with
the highest state-action value, greedy strategy), pure exploration (e.g. dynamic programming
methods), and a balance between exploitation and exploration. These strategies aim to achieve
the latter, the balance between exploitation and exploration. In this sense, ε-greedy is a vari-
ation of greedy selection (pure exploitation), this strategy also selects the action based on the
best state-action value. However, rather than always following the best value selection, there
is a probability ε of selecting an action from the remaining actions.

2.1.3.6 Statistical

Usually, commercial systems are built using state-based or frame-based approaches. However
building a system with hand-crafted rules is expensive (if one wants to extend the scope of
the system, new hand-crafted rules are required). In this regard, formulating the problem as
having a dialogue policy to optimise and automatically learn that policy, to adapt to different
domains or extend one, can be considered a suitable approach for open domain.

Statistical approaches are data-driven, i.e., these systems are trained from a dataset auto-
matically, building stochastic statistical models, often almost without any human supervision
and with few (or any) hand-crafted parameters. Moreover, these approaches are, usually, based
on information state, rather than other structural dialogue state approaches. The differences
between these approaches are, in the first case, that the information is the dialogue state itself,
while in the latter, dialogue is regarded as behaviour according to some grammar, as noted
by Traum and Larsson (2003). Information state approaches are composed of five components:
(i) a description of informational components (e.g. common beliefs, intentions, linguistic struc-
ture), (ii) formal representation of the previous components, (iii) a set of dialogue moves (that
trigger the update of the information state), (iv) a set of update rules (to update the information
state), and (v) an update strategy (responsible for deciding which rules should be applied at a
given point from a set of applicable rules).

Formulating the problem as data-driven and considering information state, motivated
modelling dialogue as a stochastic model using RL: the most successful approaches are based
on MDP and Partially Observable Markov Decision Process (POMDP). Although there was
previous work on modelling dialogue strategy as a stochastic optimisation problem using
RL, Walker et al. (1998) were the first to propose the statistical model considering the inter-
actions with real users. Even tough this model was proposed as an off-line algorithm, it is im-
portant to note that the formulation by Walker et al. (1998) allowed the system to be evaluated
in real-time with real users. In order to test with real users, Walker et al. used the PARADISE
framework (Walker et al. 1997) to derive an empirical performance function, combining sub-
jective user preferences and objective system performance measures. This framework is partic-
ularly important, as it proposes a method to specify reward functions in a data-driven manner.
Moreover, PARADISE uses regression analysis to derive a linear combination of objective fea-
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tures that is predictive of subjective user ratings (Lemon 2011). However, the approach, to
model dialogue strategy as a stochastic optimisation problem, was constrained to the dialogue
manager being based on a state machine.

Levin et al. (1998) formulate the problem as an MDP, arguing that the problem of dialogue
strategy can be defined as an optimisation problem and solved by a number of different meth-
ods, including RL. Thus, formulating the problem as an MDP allows dynamic changes to the
dialogue strategy and the decision of the action (to be performed) to be based on optimizing
rewards (or costs) given the current state. However, this approach has some disadvantages:
for example, learning with large state spaces, learning from small initial data sets, learning the
reward function. These disadvantages have already been addressed and for each one a solu-
tion has already been proposed (Singh et al. (1999), Young (1999), Levin and Pieraccini (1997),
Litman et al. (2000), Walker et al. (1998)).

Another formulation proposed for this problem is a generalization of MDP,
POMDP (Williams and Young 2007). This formulation is an extension of MDP that removes the
requirement that the system always knows the current state precisely. This approach also as-
sumes the Markov property and can also be solved via RL. However, the state st is not directly
observable and reflects the uncertainty in the interpretation of user utterances, regarding the
output of the Natural Language Understanding (NLU) module as a noisy observation (Young
et al. 2013). More formally, a POMDP is a tuple < S,A, T,R,O,Z, γ >, where S is a set of
states s ∈ S, A is a set of actions a ∈ A, T is the transition probability P (st|st−1, at−1), R is the
expected reward r(st, at), O is a set of observations with o ∈ O, Z is an observation probability
P (at|st−1, at−1), and γ is a discount factor (0 ≤ γ ≤ 1). An important definition in POMDP is
that, as st is not known precisely, the state is defined as belief state: this state is a distribu-
tion over all states, providing an explicit representation of uncertainty, as the observations are
noisy. In turn, this representation allows building systems more robust to speech recognition
errors, as well as, together with policy-derived action, it allows dialogue design criteria to be
included through associating rewards with state-action pairs. More details regarding the belief
state update and policy optimization can be found in Young et al. (2013).

As stated by Young et al. (2013), learning directly from corpora can be questionable, as the
state space that prevailed during the collection of data may be different from the one used in
policy optimisation. To address this, usually, the alternative is to build a model of the user that
can interact directly with a DS, which, in turn, can itself be trained on corpora. This user sim-
ulator can be used for development, training, and evaluation purposes. The main applications
of systems with this formulation are information inquiry applications, voice dialling, tourist in-
formation, car navigation, among others. In fact, Bayesian update of dialogue state (BUDS) was
evaluated in a tourist information domain, where users could ask about hotels, restaurants, and
bars in a fictitious town. Additionally, the dialogue supported mixed-initiative and the users
could speak about nine concepts, in order to find a suitable venue. After finding the venue,
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the users could ask about four further concepts related to the venues. Another example in the
same domain can be found in Young et al. (2010). This example is based on the Hidden Infor-
mation State (HIS) model (not discussed here), an analogous model to BUDS to factorise the
state space. However, even though the complexity of the update is not significantly different, in
HIS the belief updates are calculated on the assumption that the user goal does not change. In
contrast, the BUDS framework, using loopy belief propagation or grouped belief propagation,
allows that the user goal changes (needs approximations to do so) and allows conditionally
independent slots.

2.1.4 Open Domain and Dialogue Management

In order to be able to support open domain, techniques to extend a domain are crucial, i.e.,
when there is a previously unseen concept in a domain, the system must be able to learn it. The
ability to extend a domain is very important, as it implies that a system with such ability is able
to learn more about a domain, or even learn a new domain, and thus it must be able to learn
any concept in an arbitrary domain. In order to be able to do the latter, the system must be
built with techniques that allow it to reuse existing knowledge and to be adapted in an on-line
fashion.

Recent work has been developed to address theses problems: extending domains and
DM adaptation to those domains (Gašić et al. 2013; Gašić et al. 2014); policies to handle
multi-domain statistical DM (Gašić et al. 2015); learning and transferring domain knowledge
through ontology parameterisation (Wang et al. 2015). Gašić et al. (2013) suggest using policy
adaptation in the form of transfer learning, as already used in RL, applied to DM, so that the
dialogue manager supports domain adaptation. The key aspect of this approach is, after learn-
ing a domain, to improve the learning of others considering the expertise on the first. Thus,
transfer learning addresses the problems of (i) given an arbitrary target domain, how to select
the proper source domain from the set of source domains, (ii) given both arbitrary target and
source domain, how to find the relationship between these domains, and (iii) having the rela-
tionship, how to effectively transfer knowledge from one to the other. In the aforementioned
work, Gašić et al. models, in on-line RL, the Q-function as a Gaussian process (GP) (Engel et al.
2005),

Q(b, a) ∼ GP (0, k((b, a), (b, a))) (2.9)

, where the kernel k is factored into separate kernels over the belief state and action state
kb(b, b

′)ka(a, a
′). Thus, for policy optimisation, an updating strategy is required, as the Q-

function is modelled as a GP, the strategy used is GP-SARSA. This strategy is inspired by the
SARSA algorithm (section 2.1.3.5) and learns a Gaussian distribution over state-action values.
Thus allowing model-free policy improvement performance. Formulating the Q-function as a
GP derives from the need to explicitly obtain distributions of various derived quantities, as a
GP is a normal distribution it implicitly inherits this property. In addition, in this approach,
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Gašić et al. use the BUDS framework.

Following this approach, Gašić et al. (2014), formulate the transfer learning technique so as
to allow on-line repeated incremental domain extension. Also using GP to optimise the policy
of the POMDP in the BUDS framework, this approach relies on ontologies (automatically gen-
erated using information from the web (Ben Mustapha et al. 2015)) to represent the knowledge
of the domain. The domain is extended by learning new slots, new concepts, incrementally and
on-line, and the adaptation is done through interaction with real users. This interaction was
performed via the Amazon Mechanical Turk service (in a telephone-based DS), where the users
were assigned specific tasks in different domains (e.g. to find restaurants with particular fea-
tures) and after each dialogue they were asked if the dialogue was successful or not. This way,
the policy was trained for a limited domain and then incrementally adapted to a larger domain
without supervision. Additionally, as in the previous approach, it is suggested that learning
the domain incrementally is faster than learning directly the full domain, i.e., starting with a
simple system and successively extending and adapting it slot by slot has showed to achieve
optimal performance faster than learning all the slots of the domain at once. More formally,
decompose the complex domain into a series of domains with gradually increasing complex-
ity and train the system in stage iteratively adapting to successfully more complex domains is
faster than learning the full complex domain.

Gašić et al. (2015) also propose a multi-domain dialogue architecture, structuring dialogue
policies in a class hierarchy aligned with an underlying knowledge graph. This graph is re-
garded as a tree-structure class hierarchy, where each class represents a domain or topic (using
slots) and derived classes represent specialisations of that domain. The purpose of this for-
mulation is to support scaling to multiple domains. Furthermore, the idea is to build generic
policies with a small training dataset, then, when the system is deployed, and more data is
collected, the specific policies will be trained for the derived classes. Therefore, refining the
policy from generic domain policy to domain specific policy. In this approach, Gašić et al. also
use ontologies to represent domain knowledge, in a hierarchy of domains and sub-domains,
where the domains are associated with the generic policies and sub-domains with the specific
ones. Furthermore, in accordance with the previous approaches, the problem is formulated as
GP-based RL, also using GP-SARSA to model the Q-function as a GP and BUDS framework to
factorise the state space.

2.2 Topic Modelling Background

Topic models are unsupervised models that aim to model words relationships inside a col-
lection and group them by their corresponding topic, i.e., topic modelling is an unsupervised
learning method (does not require any prior annotations) that aims at given a collection of
documents find the group of words that best represent the collection, in other words, find the
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topics which best describe the collection. The number of topics is, usually, one of the parame-
ters these algorithms require to be determined manually. These algorithms enable discovering
topic patterns in the collection as they are based on the assumption that documents are mix-
tures of topics, where each topic is a probability distribution over the words (Steyvers and
Griffiths 2007).

Furthermore, topic models are, usually, generative and only consider the number of times
the word is seen in a document (although there are extensions which preserve word order-
ing). Statistical topic models require the number of topics to be defined manually and specifiy
a multinomial distribution over words for topics and over topics for documents. Topic mod-
els do not make any assumption regarding the meaning of the words in a document, instead
they make the bag-of-words assumption and aim at fitting the word in a topic. Bag of words
assumption can be regarded a vector space model where each word in the bag is active in the
vector representation of the terms. Briefly, a vector space models represent the importance of
terms in a document through a vector representation. Usually, this model represent the doc-
uments as vectors and is used, usually, for information retrieval, relevance rankings, among
others. Furthermore, in applications such as relevance ranking, the vector space model pro-
vides a method for comparing two different documents by computing the dot product and
normalizing, which is in fact the cosine angle between those two vectors. The cosine angle is
defined as

cos θ =
D1 ·D2

||D1||2||D2||2
(2.10)

There are different topic models such as Hierarchical Dirichlet Processes (HDP) (Teh, Jor-
dan, Beal, and Blei 2004) and LDA (Blei, Ng, and Jordan 2003). Although HDP are a general-
ization of LDA, where the number of topics can be learn from data, we only address here LDA,
as although topic modelling is a relevant part of the work, it is not our concern.

LDA assumes that each document in a collection is made of multiple topics, where each
topic is a distribution over a fixed vocabulary of terms (Steyvers and Griffiths 2007). Moreover,
the model assumes there are K topics associated with the collection and each document is
composed by different percentages of each topic. As a probabilistic topic model, LDA represent
its hidden variables via topics, where the documents hidden variables are representative of the
collection. Moreover, LDA is usually represented as a graphical model using the plate notation,
see fFgure 2.5, where shaded nodes represent the observed variables, i.e., the variables which
can be directly observed from the collection, and unshaded nodes the latent variables.

Furthermore, in Figure 2.5, each plate can be regarded as multiple sampling steps, where
N is the collection of words in a document; M is the representation of all the documents in a
collection. In addition, each arrow is a conditional dependency and the topics are represented
by β1:K , where K is the number of topics and βK is a distribution over the vocabulary. Finally,
θd is the variable representing the topic probabilities in document d, this variable has K dimen-
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Figure 2.5: LDA plate notation (Blei, Ng, and Jordan 2003). Shaded and unshaded nodes rep-
resent the observed and latent variables, respectively.

sions, zd:n is nth’ word topic in a document d, and ωd:n are the observed words Both α and β

parameters are symmetric Dirichlet priors which are constants in the model, as they are sam-
pled only one time. While α is the prior weight of topic k in a document, β is a prior weight of
word w in a topic, both are usually less than 1 and both can be interpreted as if the number is
close to 0 then the model will prefer sparse topic distributions and sparse word distributions,
which reflect few topics for each document and few words per topic, respectively.

Finally, the iterative process for document generation is as follows, for each document d in
the collection:

(1) Choose θi, modeled by a Dirichlet distribution with the parameter α (Dir(α)).

(2) For each word n in document d:

(a) Retrieve topic zN form the multinomial distribution Multinomial(θd);

(b) Given topic zn, retrieve a word from the multinomial distribution Multinomial(ϕ), the
probability over the vocabulary, where ϕ is modeled through a Dirichlet distribution
with the parameter β (Dir(β)).

2.3 Deep Learning

Deep learning is a statistical method for machine learning and can be defined as simply using a
Artificial Neural Networks (ANNs), which are a universal approximator, with a greater num-
ber of hidden layers. Thus, the concept of deep learning can be regarded as a redefinition of
the previous neural networks by using architectures where the number of layers is significantly
greater than traditional neural networks.

2.3.1 Deep Neural Network

A Deep Neural Network is an ANN containing multiple hidden layers between the input and
output layers, thus inheriting the approximation capability of the ANN. Artificial Neural Net-
works are known for their ability to approximate any function in a compact set with just one
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hidden layer and the sigmoidal activation function (Cybenko 1989). Therefore, Deep Neural
Networks (DNNs) can perform a mapping between the input and output, i.e., a deep network
learns a function to perform a mapping from the input space to the output space. There are dif-
ferent architectures for these networks, namely feedforward and recurrent (see section 2.3.3).

Feedforward networks perform a forward pass, i.e., feed the network an input sample
and predict the output, for each training example xi, the network is usually trained with the
standard backpropagation algorithm, where the weights of the hidden layers in the network
are updated using an optimization algorithm, for instance stochastic gradient descent:

ωij(t+ 1) = ωij(t) + η
∂C

∂ωi,j
(2.11)

In Equation 2.11, η is the learning rate andC is the cost function, which measures how good
were the predictions. Other methods for optimization exist and can yield better performance
than the gradient descent, such as Adaptive Moment Estimation (ADAM) (Kingma and Ba
2014) and Root Mean Square Propagation (RMSProp) (Tieleman and Hinton 2012), which use
adaptive methods instead of fixed learning rates, however we won’t detail the optimizers as
they are not our main concern. Two important notes: first, the partial derivatives are calculated
via chain rule; and, second, for the sake of argument we only present one of the methods
to train a network via backpropagation, which is online-learning. The other methods, batch
update and minibatching, are further discussed in chapter 6.

DNN networks also have another important aspect, the hidden layers activation. This
activation ranges from sigmoidal to hyperbolic tangent, softmax to radial basis, among others.
The activation and cost function are chosen according to the task. Another important aspect
is that these networks have a tendency to overfit, this is, to learn the mapping between the
input and output so well for the training data that they do not generalize for new unseen
samples. Thus, in order to suppress this disadvantage, these networks are usually trained using
regularization methods such as l2 norm, and, more recently the dropout technique (Srivastava
et al. 2014).

Finally, in feedforward DNN the layers have all their neurons connected to the previous
and next layer and for that reason this type of layers are usually addressed as fully connected.

2.3.2 Convolutional Neural Network

Convolutional neural networks are very similar to regular neural networks, discussed in the
previous section, as the same methods for learning still apply, as well as hidden layers made
of neurons with the same dot product and activation functions, and a cost function. However,
instead of regarding the input as simple feature vectors xi, these networks make the explicit
assumption that the input has a spatial relation and assumes that there is are 3D volumes of
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neurons. This is particularly useful for the application for which this type of networks was
developed, image processing. The reason why this approach is better than the DNN is that not
all the neurons are connect between layers, instead they are only connected to a small region of
the precedent layer.

Convolutional Neural Networks (CNNs) have, usually, three different types of layers: con-
volutional, pooling, and fully connected (this one was already discussed). Briefly, the convolu-
tional layers computes the output of the neurons with respect to a local region in the input, a
filter (also known as kernel or feature detector), while pooling layers perform a downsampling
along the spatial dimensions.

Moreover, convolutional layers apply the convolutional operation to learn the filters, i.e.,
the layer looks at a specific region in the input and through convolutions produces a new re-
gion in a different smaller space. Thus, this layers need a mechanism to look at different regions
of the input, which is accomplish by three parameters: depth, stride, and zero-padding. The
depth parameter corresponds to the number of filters the network will use, each looking at dif-
ferent regions of the input; the stride parameter defines how the convolution is applied, as it is
responsible for determining how the many number of units the filters slide over the input ma-
trix, and zero-padding allows to control the size of the kernels by padding with zeros in the bor-
der, allowing to filter border elements. Convolutional layers, also apply a non-linearity func-
tion to the output, usually Rectified Linear Unit (ReLU), which is defined as f(x) = max(0, x).
Pooling layers are responsible for reducing the dimensionality of each kernel, while keeping
the most important information, this way reducing the number of parameters, size of the in-
ternal representation of the network, and preventing overfitting. Different types of pooling
include max pooling, average pooling, among others.

Finally, these networks can be regarded as a feature detection network, in addition to the
approximation power of DNN. These networks filter the features that best describe the map-
ping between the input and output. Therefore, during training the network learns the filters,
this is, the network learns how to look at the 3D volume input and how optimise the spatial
relation in the input (Karpathy 2015).

2.3.3 Recurrent Neural Network

An RNN is a type of neural network that has the ability to model and learn arbitrarily long
sequences of data, this is, instead of considering a simple data point and predicting its output
(like a regular DNN), this type of networks can model the sequential dependencies between
inputs. These dependencies are often associated with a temporal dependency as the previous
data point influences directly the current point. In other words let’s consider the rationale
behind reading a document: humans read documents word after word and each one conditions
the meaning of the next one, instead of reading each word without considering the context
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Figure 2.6: An unrolled RNN (Olah 2015).

where it is inserted. The same rationale can be applied to understand RNN, in contrast with
feedforward neural networks, which predict each word without the context, an RNN has the
ability to model the sequence by maintaining the context in a persistent state, instead of always
forgetting.

Moreover, this persistence can be regarded as applying the same transformation at each
step of the sequence, while considering the previous transformation. To illustrate this concept,
an unrolled RNN is depicted in Figure 2.6.

Understanding the notation and mathematical background behind this type of networks
is important, let us define the input sequence as x = (x1, · · · , xT ), the hidden state vector as
h = (h1, · · · , hT ), and the predicted output vector as y = (y1, · · · , yT ), where timestep t ranges
from 1 to T . The RNN is defined by the following equations:

ht = σ(Wh · xt + Uh · ht−1 + bh) (2.12)

yt = Wy · xt + Uy · ht−1 + by (2.13)

In Equations 2.12 and 2.13, ht is the network’s hidden state, xt is the input at step t, yt is the
output at step t, σ to a non-linear activation function and Wh,y, Uh,y and b are weight matrices
and biases, corresponding to the network’s parameters.

Although in theory RNN can learn arbitrarily long sequences, in practice these networks
have shown difficulties learning dependencies that have a very large span of information (Ben-
gio et al. 1994). Another problem with these networks is how to train efficiently, as training
with traditional Back Propagation Through Time (BPTT) algorithm has been proved to be ex-
tremely difficult due to the exploding and vanishing gradient problems (Bengio et al. 1994).
Thus, to address these problems two different RNN-based methods were proposed, Long-Short
Term Memory (LSTM) and Gated Recurrent Unit (GRU).

2.3.3.1 Long-Short Term Memory

To address the limitations of “vanilla” RNNs, the LSTM was proposed by Hochreiter and
Schmidhuber (1997). This formulation was studied and further developed in following works
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Figure 2.7: Internal RNN structure (Olah 2015).

Figure 2.8: Internal LSTM structure (Olah 2015).

by the community. LSTMs have been widely applied in numerous Natural Language Process-
ing (NLP) applications with success, as the tasks in NLP are easily formulated as sequential
problems.

In contrast with RNNs, which possess a cell structure consisting mainly of a single neural
network (see Figure 2.7), LSTMs’ cell structure is more complex, as it uses different gates to
control how the internal morphing of the information is processed. Thus, these gates interact
with each other to control how the information is morphed in the cell’s internal state. This is
accomplished via “selective writing, reading, and forgetting” (R2RT 2016). The cell’s structure
is depicted in Figure 2.8, where each line represents the flow of a vector representation, each
yellow square represents a regular neural network layer, and pink circles represent a elmen-
twise operation. In addition, in each divergence in the lines the vector is copied, while each
convergence represents a concatenation.

The mathematical background for LSTM is analogous to the one in Equation 2.12. How-
ever, the output and hidden states take into consideration the internal gates. Therefore, an
LSTM is, usually, defined as follows:

it = σ(Wi · xt + Ui · ht−1 + bi) (2.14)

ft = σ(Wf · xt + Uf · ht−1 + bf ) (2.15)

C̃t = tanh(Wc · xt + Uc · ht−1 + bc) (2.16)
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Ct = ft ∗ Ct−1 + it ∗ C̃t (2.17)

ot = σ(Wo · xt + Uo · ht−1 + bo) (2.18)

ht = ot ∗ tanh(Ct) (2.19)

In equations 2.14 to 2.19, σ is an activation function (usually the sigmoid function, as it is
differentiable and produces continues values between 0 and 1), xt is the input at step t, ht−1
is the previous hidden state, Ct−1 is the previous cell state, ft is the forget gate, it is the input
(write) gate, C̃t is the candidate state value, Ct is the current cell state, ot is the output (read)
gate, ht is the LSTM current hidden state, andWi,f,c,o, Ui,f,c,o and b are weight matrices and bias
vectors, respectively. This is just one of the possible formulation for LSTM, as there are other
approaches. However, for the sake of argument we only present here a well known version,
for more variants the reader is encouraged to read Greff et al. (2015).

The decision process of an LSTM network can be described in the following steps: first the
network decides which information should be “forgotten” via the forget gate, while deciding
which values should be updated via input gate. Then, the network updates its cell state, this
is accomplished by first computing the candidates values that could be added to the state,
and conjugating which information should be forgotten (forget gate decides what should be
forgotten from the previous cell state) and what new information should be written into the
cell state (combining the candidates values and the input gate). The final step is deciding
what to output. The output gate decides which parts of the cell are going to be outputted
and is followed by a non-linearity activation (tanh) to push the values between -1 and 1 and
multiplied by the output gate. This product will be the cell hidden state ht (Olah 2015; R2RT
2016).

2.3.3.2 Gated Recurrent Unit

The GRU was proposed by Cho et al. (2014) as a variation of the LSTM, where instead of
coordinating the writes and forgets, the GRU links them explicitly into one gate, called the
update gate (which acts as a “do-not-update”). Furthermore, the GRU replaces the “selective
writes” and “selective forgets” by a single “selective overwrites”. This is accomplished by
setting the forget gate to 1 minus the input (write) gate (which is in fact specifying how much of
the previous state the cell should not overwrite). The GRU cell internal architecture is depicted
in figure 2.9.

The fundamental equations of the GRU are the following:

zt = σ(Wz · xt + Uz · ht−1 + bz) (2.20)

rt = σ(Wr · xt + Ur · ht−1 + br) (2.21)
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Figure 2.9: Internal GRU structure. Extracted from (Olah 2015).

h̃t = tanh(W · (rt ∗ ht−1) + U · xt + b) (2.22)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (2.23)

In Equations 2.20 to 2.23, xt is the input at step t, ht−1 is the previous hidden state, zt is the
update gate, rt is the reset gate, h̃t is the shadow gate, ht is the current hidden state, and
W,Wz,r, U,Uz,r, and b are the weight matrices and bias vectors, respectively. Note that the
original formulation defined rt as the reset gate, however this gate functions more as a read
gate.

Both GRU and LSTM address the limitations of the vanilla RNN, however which one is
better is yet not clear. Different studies concluded that the architectures work best in different
problems (Chung et al. 2014). An anecdotal comparison is that, usually, GRUs converge faster
and with less training examples, however LSTMs produce better results (again the architectures
work best in different problems).

2.4 Summary

In this chapter we presented the background for deep learning, topic models, and DS, as they
are all relevant for the context of open domain. A DS can be regarded as an agent with a
communicative goal with different initiatives, proactive, reactive, and mixed. Moreover, DSs
are usually built using one of two views: as an interface; as a simulation. The DM has an
important role in the open domain context as it interacts directly with the generation module.
In addition, the approaches to open domain in DM are, mainly, statistical and focus on POMDP
and different policy optimizations to refine domains in an ontology graph.

A topic model is an unsupervised generative method for modelling the relation between
words in different documents and cluster in different topics. A well known topic model is the
LDA, which makes a bag-of-words assumption over the data and clusters different words into
different topics.

Finally, ANN can map any function in a compact set and DNNs are just ANNs with mul-
tiple layers. Thus, deep learning is using deeper neural networks architectures. We described
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what is a DNN, how the network is trained and the power of ANN. CNNs are widely ap-
plied in computer vision and can be regarded as a network that learns which are the features
that best represent the input. Moreover, RNNs can model arbitrarily long sequences but suffer
from practical problems, namely vanishing and exploding gradients. However, different spe-
cializations have been proposed, namely LSTM and GRU, which use gates to control how the
information flows inside the cell.

In the next chapter we discuss the approaches to our main focus, NLG, and contextualize
them in the open domain problem, where we will use the terminology of reinforcement and
deep learning, we do not discuss the mathematical background further.



3Related Work

In this chapter, we provide the reader the related work on NLG, which is the main focus of
this work. We start by presenting the different approaches in the literature, namely template-
based approach, conventional pipeline approach, and statistical, and discuss the differences
between them. Then, we contextualize NLG and open domain and discuss the best approaches
to address open domain in the generation module.

In the previous chapter we provided the required background in topic modelling, deep
learning, and DSs. The background in DS is relevant to understand where the generation mod-
ule is integrated, as well as some approaches to DM and generation by jointly optimizing both
components. Nevertheless, the management module is not our focus in this work, thus, we
do not discuss more details of DM in this chapter. The deep learning and topic modelling
background is relevant in the context of statistical approaches and open domain in NLG.

Regardless of the approach, the process of language generation is often viewed as goal-
driven communication (Reiter and Dale 2000). Consequently, a communicative goal or commu-
nicative intention is attempted to be satisfied in order to produce an utterance. This commu-
nicative goal or intention is abstract, its interpretation is not fixed, and is often to inform the
listener, request or persuade the listener to do something or obtain information from the lis-
tener. To satisfy those goals, a communicative act is decided and performed, so that the listener
understands the speaker’s intention. Furthermore, the interaction between the speaker and
listeners can be viewed as reasoning about intentions (Stone 2005), i.e., first, the speaker must
utter in such way that his intention is recognizable and, second, the listener must determine
what the speaker was trying to do by reconstructing the speaker’s intention.

Considering language use as an action underlies speech act theory (Philip R. Cohen and Pol-
lack 1993), thus philosophical and linguistic work in this area has a great influence in NLP. This
theory is not adequate for multisentential texts since it usually concerns only single sentences.
The most influential work to consider multisentential texts from the perspective of the un-
derlying intentions of the speakeris Rhetorical Structure Theory (RST) (Mann 1984; Mann and
Thompson 1988), which is concerned with both inter-sentence and intra-sentence relations.

NLG is characterized as choosing “how” to say what is intended, i.e., after “what to say”
has been determined, NLG is responsible for determining “how to say it”. Therefore, NLG is,
usually, composed by a variety of decisions. These decisions are, for example, content deter-
mination, referring expression generation, anaphora generation, ellipsis, aggregation, among
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others (each of this aspects, by itself is a research subject, e.g. Dale and Haddock (1991)).
The “what” is usually determined by a DM, regardless of the approach (section 2.1.3), and the
“how” is usually defined by templates or hand-coded rules. The aforementioned approach
is the first one of the possible approaches, as generation has three different main approaches.
First and most used is generation with templates or hand-coded rules. This is the main approach
in industrial dialogue systems. Second, the conventional approach, as described in the litera-
ture (Reiter and Dale 2000), follows a pipeline architecture with three components (text plan-
ner, sentence planner, and surface realizer). Third and last, trainable generation, uses automatic
techniques to train NLG modules and adapt the system to specific domains and/or users. Each
of these approaches is described in detail in the following sections.

3.1 Templates and Hand-coded Rules

Template-based or hand-coded rules are often developed as systems that map their non-
linguistic input directly to the linguistic surface structure. This linguistic structure may contain
gaps and these are filled with the linguistic input. Thus, a well-formed output results when
those gaps are all filled, more precisely, as noted by Van Deemter et al. (2005), when all the
gaps have been replace by linguistic structures that do not have gaps. A well-known example
is D2S (Theune et al. 2001), this system consists of two modules, (i) a language generation
module (LGM) and (ii) a speech generation module (SGM), which turns the generated text into
a speech signal.

3.2 Pipeline Conventional Approach

Reiter and Dale (2000) propose that in order to develop a NLG system, one should consider
dividing the problem into modules, where each one performs one or more tasks. The input of
a NLG system is formalised as a four-tuple < k, c, u, d >, where k is the knowledge base, c is
the communicative goal to be achieved, u is a user’s model and d is the discourse history. In
this sense, the conventional approach, usually, consists of three modules (i) document planner,
(ii) sentence planner and (iii) surface realizer. Therefore, each one of these modules is respon-
sible for some of the tasks in “how to say it”. This particular approach is also responsible for
“what to say”, as the first module is responsible for deciding it. Moreover, this approach can
be decomposed into the last two modules and integrated in a dialogue system with the DM
(responsible for “what to say” and decide the communicative goal). The first module – docu-
ment planner (also knwon as sentence planner) – is, usually, responsible for content selection
and discourse structuring, this is, its purpose is to determine the informational content and
the structure of the document that meets the communicative goal, “what to say”; the second
module – microplanner – is responsible for the selection of attributes for referring expressions,
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aggregation and selection of lexical items, this is, its purpose is to refine the document plan
in order to produce a more fully-specified text specification and, last, the third module – sur-
face realizer – is responsible for the linguistic realization as well as structure realization, i.e., its
purpose is to convert the text specification (sentence plan) into natural language.

This approach has also been addressed as a problem of planning, treating, this way, the
construction of sentences as a rational activity and using planning mechanisms to construct
those sentences. Appelt (1992) was one of the first to propose such system and focused on the
high-level structure of the task, such as speech acts (Cohen and Perrault (1979) work, which
is also based on planning) and discourse theories, among others. However due to the inef-
ficiency of the planners available at the time, this approach was not tractable for real-world
systems. In this sense, recent approaches have also addressed this problem, namely, the sys-
tems CRISP (Koller and Stone 2007), SPUD (Stone, Doran, Webber, Bleam, and Palmer 2003),
PCRISP (Bauer and Koller 2010), among others. These approaches use Tree Adjoining Gram-
mars (TAG) , and Lexicalised Tree Adjoining Grammars (LTAG), in order to achieve what they
propose. A TAG is, roughly, a finite set of elementary trees, for LTAG the trees are lexicalised.
Additionally the CRISP system distinguishes itself from the approach by Appelt and Cohen
and Perrault by focusing on the grammatically specified contributions of each individual word
to the syntactic, semantic, and local pragmatic goals of the generator.

The SPUD system (Stone, Doran, Webber, Bleam, and Palmer 2003) was the first to ap-
proach the problem with TAG. The system assumes the existence of a lexicon of entries con-
sisting of a TAG elementary tree annotated with semantic and pragmatic information, and its
main goal was to merge the determination of referring expressions with the realization step as
these steps perform well together. However, SPUD had to explore a search space that was too
large and resorted to a greedy search (not complete nor optimal, with both time and space com-
plexity O(bd), where d is the maximum depth of the search). To address this limitation, Koller
and Stone propose the CRISP system (Koller and Stone 2007). Koller and Stone system regards
sentence planning and surface realization as one step, and differs from the previous in, first,
encoding the problem in Planning Domain Definition Language (PDDL), the input language
for recent planning systems, and, second, the manner how they formalize the semantic content
of a lexicalised elementary tree t, using the semantic roles present in the tree as arguments to
the finite set of atoms that define tree t. In addition, CRISP depends of a grammar in order to
solve the problem. However the problem of deciding whether given a communicative goal if
it can be achieved with a given grammar is NP-complete.

3.3 Trainable Generation

The trainable approach is, currently, the one being further developed as its goal is to avoid any
hand-craft decision – this way overcoming domain-dependent generation. There are several
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distinct methods of approaching the problem, for instance, automatic techniques to train NLG
modules (Stent, Prasad, and Walker 2004), or using RL to model the optimisation and plan-
ning of sequence of actions-in-context (Lemon 2011), or Hierarchical Reinforcement Learning
(HRL) (Dethlefs and Cuayáhuitl 2010). Early work in this approach focused on trainable mod-
ules within the framework of Reiter and Dale, i.e., using supervised learning to build models
that were then used in decision processes of the modules and over-generate and rank. Such
systems are exemplified in HALLOGEN (Langkilde and Knight 1998) and SPOT (Walker, Ram-
bow, and Rogati 2001). The first had the premise of using n-gram language models to re-rank
a set of candidates generated by a handcrafted generator and the latter the premise of over-
generation and ranking, specifically, ranking rules learned from a corpus of manually ranked
training examples. However, the latter was unable to produce utterances with variation in the
rhetorical structure and was limited to learning to optimise speech-act ordering and sentence
structure choices.

Furthermore, there are other systems with trainable modules within the generation frame-
work to allow the model to adapt to different domains and also based in over-generation and
ranking, particularly, the approach by Walker et al. (2007) of treating generation as a ranking
problem, over-generate with domain-independent rules and then ranking based on user cor-
pora or feedback, and SPaRKy system (Stent, Prasad, and Walker 2004), an extension of SPOT
to sentence-planning and showing that the training technique used for that system can be ex-
tended to a new domain. Analogously, other approaches are in this scope, particularly corpus-
based approach that aim to learn to generate from data also adopting over-generation and
ranking, Oh and Rudnicky (2002) used bigram language models, and more recently Wen et al.
(2015), used RNN based on Recurrent Neural Networks Language Model (RNNLM) (Mikolov
et al. 2010) and using CNN to validate the semantic consistency of candidates during re-
ranking, where the final response derives from re-ranking a set of candidates created by a
stochastic generator. Moreover, Wen et al. (2015) use LSTM to learn from unaligned data and
jointly optimise the sentence planning and surface realisation components (they treat the prob-
lem as one step analogously to what Koller and Stone proposed, as described in section 3.2),
without using any heuristics, learning the control of gates and surface realisation jointly – this
implies even less manually defined parameters. Serban et al. (2015), Li and Jurafsky (2016)
propose learning generative models, namely variational latent models in two different con-
texts: the first models predicting the next utterance in an hierarchical model, while the second
proposes learning topic context directly from data. These approaches are further discussed in
section 3.4.

Another approach to the problem is using RL (section 2.1.3.5) to jointly optimise some (or
all) of the steps in the conventional framework. The main reasons of approaching generation
as a RL problem are: (i) reducing and eliminating all hand-crafted rules or thresholds, and
(ii) treating generation as an optimisation problem. Moreover, an important reason to use RL in
this problem is that this method is concerned with the problem of learning from the interac-
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tion between an agent and the environment, in order to achieve a goal. Although there were
approaches that jointly optimise DM and NLG (section 2.1), in this section only approaches
to NLG are presented. Of the recent approaches, we emphasize Rieser and Lemon (2010) in
the context of DS, Lemon (2008) treating NLG as statistical planning and Dethlefs et al. (2011),
Dethlefs and Cuayáhuitl (2011) dividing the problem into sub-problems and applying HRL to
optimise (and solve) it.

Furthermore, Lemon (2008), in the context of information presentation, formulates the
problem as statistical planning and optimisation using an MDP to achieve what is intended.
Thus, trying to take advantage of an MDP-based planning and learning framework, analo-
gously to what has been developed successfully in dialogue management, for instance Walker
et al. (1998), Young (1999). Additionally, Lemon proposes the joint optimisation of the process
of generation for information presentation, i.e., optimise the process as one step, training the
policy with hierarchical SARSA algorithm. Lemon’s work focused in a simple information pre-
sentation context, listing items about a restaurant domain, nonetheless obtaining fine-grained
adaptations to context and automatic optimisation. Furthermore, the author suggests that this
method could be applied to each of the decisions of generation separately.

Rieser and Lemon (2010), also in the context of information presentation, formulate the
problem as an MDP and use the SARSA algorithm to train the policy, achieving (as the lat-
ter) fine-grained adaptations to context and automatic optimisation. As already mentioned
and suggested by Lemon (2008), one can optimise each step of the process of generation, as
such Dethlefs et al. (2011) formulate the problem as HRL to jointly optimise some of those steps,
namely content selection, choice of text structure, referring expressions, and surface structure.

HRL is RL that optimises a hierarchy of policies on a hierarchy of agents. This hierarchy
consists of L levels and N models per level and each agent is defined as an Semi-Markov
Decision Process (SMDP). An SMDP is structured in a similar way to an MDP, however the
reward is defined as the one received from taking an action a in state s and that lasts τ steps, this
random variable represents the number of steps to complete an action. Thus, HRL is useful for
tasks where the search space is too large, in contrast with “flat” RL as it may not be applicable
to such task.

Using HRL, Dethlefs et al. approach the generation problem as an optimisation one, par-
ticularly to some of the steps of the conventional approach, training the policy with the hier-
archical Q-learning algorithm, this is a hierarchical perspective of the traditional Q-learning
algorithm. Formulating the problem as a hierarchy of sub-problems and decomposing the
problem, allows having context-independent policies. Thus, the possibility of policy reuse and
facilitating state-action abstraction. Additionally, the hierarchy is defined by 15 agents, where
each agent is responsible for some subtask inside a “cluster” task to which it belongs. The
number of agents is proportional to the task. This approach was developed in the context of
giving navigation instructions (in GIVE domain) and each agent is responsible for a subtask of
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that domain. However, not every step of the process is fully automatic, as there is prior knowl-
edge in the agents: leaf agents in the hierarchy were initiated with values from a hand-crafted
language model, this prior knowledge is used by the reward function. Besides this approach,
and using a similar one, Dethlefs and Cuayáhuitl formulate the problem also as an HRL to
jointly optimise the generation process, this time only content selection, utterance planning,
and surface realization, using a Bayesian Network (BN) for surface realisation. The BN was
manually constructed, taking into account two dependencies (i) information need, must be a
major influence in including all optional semantic constituents and the utterance’s process, and
(ii) the believe that there is a sequence of dependencies that spans from the verb to the end of
the utterance (formulating the hypothesis that each constituent can be estimated based on the
previous, as a BN allows). As an HRL problem, a reward function was defined based on the
PARADISE framework (section 2.1.3) for content selection and utterance planning; for surface
realization, a reward based on data collected from users was proposed, learning this way to
balance the most likely surface form.

Finally, recent efforts to address statistical NLG in the context of open domain have been
develop, namely by Li and Jurafsky (2016). Li and Jurafsky proposes instead of training a
discriminative model, training generative models, namely Seq2Seq (Sutskever, Vinyals, and Le
2014) models to address coherence in open domain. In addition, Li and Jurafsky first propose
using a vanilla Seq2Seq model, however conclude that using a vanilla Seq2Seq model does not
address relevant features of discourse, namely topics. Moreover, Li and Jurafsky propose using
a Markov Topic model (an extension to LDA), where the topic influences the prediction of the
next word, and conclude that using a topic model for open domain is too generic, missing the
fine-grained relations in each topic. Finally, the authors propose a variational latent model,
which learns the global discourse information (topics) directly from data, instead of from a
model like LDA.

3.4 Open Domain and Natural Language Generation

The NLG component is very important to achieve an open domain interaction as it is respon-
sible for generating utterances that depend on the current context. Thus, this component must
be capable of generating a valid utterance regardless of the domain, i.e., this component must
be domain-independent.

Recent approaches to address open domain in NLG are mainly statistical. However, there
have been approaches to create an hybrid approach, merging statistical and template-based
approaches (Angeli, Liang, and Klein 2010): using templates to perform surface realization
and statistical learning for the sentence planning component. Particularly, Angeli et al. (2010)
divide the generation process into a sequence of local decisions, using domain-independent
features responsible for macro content selection, micro content selection, and surface realiza-
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tion. Furthermore, this approach builds generative models for each type of decision previously
mentioned, where each model has a specification of the sequence of records chosen (records are
responsible for macro content selection), the sequence of fields chosen (fields are responsible
for micro content selection, which fields of the records are mentioned), and which words in the
text were spanned by the chosen records and fields. Then, the models parameters are learnt
in an unsupervised approach using the Expectation Maximization (EM) algorithm, resulting
in an alignment that specifies the record decisions and a set of fields for each record. Finally,
the templates are extracted from the information acquired in the previous step. There are two
templates in this approach: (i) a template that abstracts fields (replacing the words spanned
by a field by the field itself), and (ii) a template which only abstracts a subset of the fields. The
latter template was necessary due to the noise that can occur in the alignments.

Other approaches treat NLG as an optimisation problem, formulating the problem as an
MDP (Lemon 2008) or SMDP (Dethlefs and Cuayáhuitl 2010) and solving it via RL (or HRL),
or formulating it as a RNN (Wen et al. 2015) or LSTM (Wen et al. 2015). In the first case, the
premise is to optimise some of the steps or tasks of the conventional approach jointly, solving
through RL or HRL (usually, Q-learning is the method to optimise the policy, discussed in
section 2.1.3.5). In the latter case, the premise is to apply the well-known techniques of Artificial
Neural Networks, particularly RNN and LSTM, to the generation process.

Lemon and Dethlefs and Cuayáhuitl formulate the problem as an MDP and as a SMDP,
respectively, with the premise of optimising some steps of the conventional approach. In the
first case, Lemon’s proposal is to jointly optimise surface planning and surface realisation, i.e.,
solving the problem in one step. In the second case, only some of the steps are optimised,
solving the problem with SMDP (solved with HRL) to address the limitation of large state
spaces in MDP formulation. Using these methods, the system is able to learn directly from the
interaction with the environment.

The main reason to formulate the generation approach as an RNN or LSTM is due
to Mikolov et al. (2010) RNNLM formulation, which demonstrated the value of distributed
representations and the ability to model arbitrarily long sequences (although it was in speech
recognition). This formulation is, briefly, using RNN for language modelling. Mikolov et al.
trained the network using the simple feedforward method and, later, backpropagation through
time (Mikolov et al. 2011), which outperformed all the other methods in statistical language
modelling. A well-known problem of RNN is the vanishing gradient problem, each of the
neural network’s weights is updated proportionally to the gradient of the error function (re-
garding the current weight in each iteration of training) and, usually, gradient computation is
performed through the chain rule. This implies multiplying n of small numbers in order to
compute gradients of the “front” layers in an n-layer network, thus the gradient (error signal)
decreases exponentially with n and the front layers train very slowly.

Formulating the problem as an LSTM solves the vanishing gradient problem in RNN: us-
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ing gate units to avoid input conflicts and controlling the error flow, i.e., the net can use the
input to decide when to keep or override information in the memory cell and the output to
decide when to access memory cell cj and prevent other units from being perturbed by cell cj .
Therefore, these gates are responsible for controlling how information is stored, forgotten, and
explored. Both Wen et al. 2015 and Wen et al. 2015 approaches have, recently, suggested the
ability to easily transfer the generation capability from one domain to a new one, although a
smaller set of adaptation data is required. However, in Wen et al. (2015), the behaviour of the
CNN was somewhat arbitrary, which implies that the sentence reranking was not as good as
was intended. Additionally, this approach still used some hand-crafted heuristics to control
the gates.

To address these limitations, Wen et al. (2015) approach does not require the usage of hand-
crafted heuristics, as the control is already implicitly done. In addition, the network develop
by Wen et al. was composed by a backward SC-LSTM and a forward SC-LSTM, instead of using
a bidirectional as the generation process is sequential in time. The backward SC-LSTM was
needed because there are sentence forms that depend of the backward context instead of only
the preceding history. Thus, the backward network is referred as a reranker and the forward as
a generator. Both networks were trained with back propagation through time and all costs and
gradients were computed. Moreover, the method to optimise the parameters was the stochastic
gradient descent. This approach, as other corpus-based approaches, adopts over-generation
and reranking to learn generation directly from data. Wen et al. suggests that due to the
ability to model arbitrarily long sequences and a single compact parameter encoding of the
information to be conveyed, conditioning the generation with dialogue features is possible
(e.g. dialogue information, social cues, among others).

Finally, Serban et al. (2015) proposes learning a variational latent model in an hierarchi-
cal model by learning the next utterance in a turn taking dialogue. Moreover, following this
approach, Li and Jurafsky (2016) propose using Seq2Seq models using topics as a global in-
formation for discourse coherence in an open domain set. Li and Jurafsky’s variational latent
model addresses the limitations of using a generic topic model in open domain, the loss of
fine-grained relations, and learns the global information directly from data with DNN.

The approaches that regard NLG as an optimisation problem are, usually, data-driven, i.e.,
use training data to build models and optimise parameters and then validate those models
with test data. In this sense, the construction of the dataset is important, as the dataset is one
of the most important components of data-driven approaches. For both Wen et al. 2015 and
Wen et al. 2015 approaches, the target domain is information about restaurants and venues in
San Francisco, respectively, using 8 dialogue act types, such as inform, confirm, reject, among
others, and 12 slots (these are represented through ontologies). Both training corpora were
constructed using dialogues collected from previous user trials, then randomly sampled and
shown to workers via Amazon Mechanical Turk service. In turn, for each each dialogue, the
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workers were asked to enter an appropriate response for the system. Finally, the dialogue acts
filled with slots were processed and group to obtain distinct dialogue acts. For RL formulation
problems, Lemon addresses dialogues within the domain of information presentation, namely
listing items, and Dethlefs and Cuayáhuitl uses a dataset of navigation instructions domain in
a virtual 3D world in the GIVE scenario.

3.5 Discussion

Hand-coded rules are not sufficient for open domain generation, as it would require that for
each new domain, the creation of a new set of rules, even though automatically extract rules
bootstrapped from a corpus (Song, Howald, and Schilder 2015) is possible. However, template-
based generation, although often associated with the hand-coded rules approach, generates ac-
ceptable utterances. This approach is often regarded as inferior to others, but template-based
and standard NLG systems have been proven as being “Turing equivalent” (Reiter and Dale
1997). both can generate all recursively enumerable languages (Van Deemter, Krahmer, and
Theune 2005). Furthermore, although template-based approaches have been claimed as be-
ing inferior to others when considering their maintainability, linguistic well-foundedness and
the quality of generated utterances (Reiter and Dale state that these systems are more difficult
to maintain and update and produce poorer and less varied output than standard NLG), van
Deemter argues that this approach is not as inferior as claimed. This approach alone is not
suitable for an open domain approach, however recent approaches that use template-based
and trainable generation together, namely Angeli et al. (2010), have approached open domain
generation. This approach was already discussed in section 3.4. Nevertheless, it is important
to mention that Angeli et al. divide the generation process into a sequence of local decisions,
using domain-independent features responsible for macro content selection, micro content se-
lection and surface realization. Furthermore, for each of those decisions a model is built and
the parameters are learned unsupervised using EM algorithm. Therefore template-based gen-
eration by itself is not as adaptive as the trainable approach: it does not adapt to context nor
the environment, e.g. user. Even though template-based approaches have had an amount of
success when used in different domains, the scalability across domains was not that success-
ful. On the other hand, the trainable approach has shown better adaptability and scalability
(Rieser and Lemon 2010; Lemon 2011; Wen et al. 2015; Wen et al. 2015; Walker et al. 2001). In
this adaptability, it is included that template-based approaches tend to be excessively repeti-
tive, which sustains the lack of adaptability to the context (user, environment, among others).
Therefore, a hybrid approach where the realization is performed by templates and the sentence
planning is trained and both are jointly optimised, may be a possible approach for open domain
generation.

In the conventional approach, rules are, usually, developed (hand-crafted) for a particular
domain. Then, the rules are tuned for that domain and, as such, the ability to adapt to fine-
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grained changes (whether its dialogue context or user behaviour, among others) is limited. This
suggests that this approach may not be suitable to open domain, as it is generally developed
for a domain. Although the planning approach is promising, as noted by Koller and Petrick the
modern planners used for NLG suffer from practical problems (complexity of the algorithms
may lead to be intractable for real-world systems). This way, limiting their performance (for
real-world systems), even if the techniques to control the search in a sophisticated way proved
to improve the tractability. Thus, even if this approach promises portability across domains
and uses general rules for each generation module, the quality of generated utterances,f or a
particular domain, may be inferior than the ones generated by a template-based approach.

In the trainable generation approach, the corpus-based approaches are the ones with fewer
(if any) parameters or hand-crafted rules to be tuned. This is important because to be able
to build an open-domain approach the fewer the parameters, the closer to an open-domain
the system is, otherwise it suffers from the same limitations as template-based approaches. Al-
though these approaches have limitations, e.g. data availability, they also have showed promis-
ing results in adaptability to changes in the environment and previously unseen concepts, im-
portant features in the scope of this work, regardless of how the problem is formulated. As
such one can argue that this approach might be suitable for an open domain environment as
there is no need to manually design the system for a specific domain. However, as pointed out
by Walker et al. (2001), even with the increasing amount of available data, this approach suf-
fers from the need for annotated training data. In addition, as pointed out by Wen et al. (2015),
the approach has weakness in the utterance naturalness and training data efficiently and accu-
rately, even though Wen et al. approach addresses these weakness and generates more natural
utterances than previous approaches, more efficiently.

Concluding, one can argue that among the advantages in using the trainable approach to
generation are the adaptability to fine-grained changes in the context of the dialogue (e.g. user,
environment), being a data-driven approach, being a precise mathematical approach, being
capable of generalizing to unseen utterances, among others (Lemon 2008). Formulating the
problem as an MDP and using RL to solve it has those advantages. Additionally, learning is
done through interaction with the environment, a desired characteristic in the scope of this
work. The possible problems of using an MDP and RL to solve the generation problem are,
among others, the time to converge, choosing the proper method to train the policy, the large
state space (HRL can be used to address this limitation) and the need for larger initial training
set. Even with these disadvantages, this approach has key advantages when comparing to
template-based and conventional approaches. Additionally, as demonstrated by Dethlefs and
Cuayáhuitl, jointly optimising the process provides better results than optimizing some of the
steps and using a BN for surface realization generates language similar to human (better than
other approaches). The authors also suggests that this work might be portable to other domains
(transfer learning might be successful), which may be helpful in the context of this work.
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Formulating the problem as an LSTM, as Wen et al. (2015) recently proposed, also has the
aforementioned advantages, not relying on any manual handcraft parameter and exploring the
ability to model arbitrary long sequences that all RNN-based architectures possess. This ability
and a single compact parameter encoding of the information to be conveyed, it is possible to
condition the generation with dialogue features (e.g. dialogue information, social cues, among
others). Although this approach has the potential to scale across domains, as a corpus-based
approach it also suffers from the need of data availability. Nonetheless, this approach, as well
as MDP ones, are more suitable for an open domain approach than the template-based or con-
ventional ones. Consequently, this approach is, possibly, the best suited approach for an open
domain interaction.

Furthermore, formulating the problem in a similar way as Li and Jurafsky (2016) allows to
address open domain in a statistical way. By providing the DNN the global information, con-
ditioning the prediction with the topic information, it is possible to take advantage of the RNN
sequence power for generation while improving the coherence of the generated utterances.

3.6 Summary

In this chapter we presented the state of art in NLG, as well as the existent approaches, namely
template-based, conventional pipeline, and statistical. The generation process is, regardless of
the approach, a goal- driven communication, as it maps goals into utterances.

Template-based approaches rely on hand-crafted rules tuned for the domain in question
and do not generalize to new domains, as the templates fill empty slots. The conventional
pipeline approach proposes dividing the problem into three modules: document planner, sen-
tence planner, and surface realization. Each one of the modules is responsible for different
tasks in the generation process. The data-driven approaches regard the pipeline architecture
as a statistical optimization problem, usually addressing one or more components, as well as
jointly optimizing the components. Moreover, the statistical are usually based on reinforcement
learning or using supervised methods, in recent times deep learning. Although reinforcement
learning, or even deep reinforcement learning, is an interesting approach, deep learning ap-
proaches have shown their potential to model arbitrarily large sequences by using RNNs.

Therefore, although there are hybrid approaches between template and statistical ap-
proaches, the best suitable approach for open domain is using statistical methods. The recent
methods used for the generation process rely on deep learning and are the baseline for our
approach described in chapters 5 and 6.



40 CHAPTER 3. RELATED WORK



4Open Domain and

Domain-specific Corpora

In order to study open domain generation, especially using a data-driven method, our dataset
must meet the following requirements: coherent discourse structure, domain dependent dis-
course, and a large domain independent vocabulary. Therefore, to meet these requirements we
have two different corpus in our dataset. The first corpus, documentaries subtitles, provides
the first and second requirement, while the second, Google n-gram (Brants and Franz 2006)
provides the last requirement. Furthermore, our documentaries subtitles focus on a specific
domain, physics, and their nature provide a domain dependent discourse, as the subtitles ad-
dress the domain in question, thus having a more domain dependent and limited vocabulary.
In addition, the subtitles provide a coherent discourse structure by being coherent with respect
to itself and to the documentary, respecting the documentary temporal nature. Finally, the
Google n-gram corpus provides a large domain independent vocabulary. The need of a large
vocabulary comes from, being able to generate utterances in open domain, as the vocabulary
addresses most of the language.

In this chapter, we describe our large domain independent vocabulary and representation,
using word representations. We describe our corpora and our approach to build a corpus from
subtitles. Our original corpus is an extension of the documentaries subtitles set described by
Aparı́cio et al. (2016). The corpus was gathered for abstract summarization tasks and was
also used for topic modelling, which is a relevant part of this work (even if it is not the focus).
Moreover, this corpus consists of 265 subtitles documentaries of the physics domain, where
almost all the documentaries are monologues and the narrator presents the different aspects of
the documentaries’ subject. Therefore, this corpus is, potentially, adequate for the focus of this
thesis: on the one hand, the corpus can be used for to topic modelling and, thus, is suitable
for the domain part of the work, and, on the other hand, it enables the narrator/explainer to
demonstrate the purpose of this work.

Furthermore, we exploit the temporal nature of documentaries to build our own corpus.
We detect scene’s boundaries by interpreting the subtitle artifact and collapsing subtitles tem-
poral alignments that meet a criteria, while preserving the original temporal alignment with
the documentary. From the narrator perspective, on one hand, we have the natural explana-
tion from the documentary narrator, and, on the other, we could, potentially, exploit the scene
in the video documentary to further explain the concepts.

We also describe and analyse our approach to topic modelling, for each we use the LDA.
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In addition, we also analyse how does the corpus we build affects the topic models.

4.1 Large Vocabulary Corpus

Having a large vocabulary is a very important requirement to address generation in an open
domain context, as the vocabulary is not limited and covers most of the words in the language.
This way, when generating an utterance, it is possible to cover, potentially, most of the words
from any specific domain.

Thus, we use the Google’s ngram dataset (Brants and Franz 2006) as our domain inde-
pendent corpus, as its vocabulary covers must of the English language. Moreover, how we
represent the words is also a relevant aspect of the large vocabulary, as we want to have a
generic space where words preserve the relations between one another. Thus, we represent the
words using word2vec (Mikolov et al. 2013), i.e., we transform the discrete word space into a
continuous dense space that preserves words relations.

Briefly, there are two architectures for generating the representations for the words, Con-
tinuous Bag of Words (CBOW) and Skip-gram. Both have advantages and disadvantages with
respect to each other, as well as the reason behind using one or another. The CBOW focuses on,
given a context (words), predict the next word, while the Skip-gram focuses on, given a word,
predict its context (words). While Skip-gram can produce a good representation with a small
amount of training data, even for infrequent words, CBOW needs a larger amount of data.
However, CBOW is faster to train and can produce better accuracy for the frequent words. An-
other aspect, which we will not further developed, is how these models are trained, namely the
normalized hierarchical softmax and the un-normalized negative sampling. Mikolov et al. sug-
gested that using Skip-gram with negative sampling is the best approach, as it outperformed
the other architectures on different tasks.

Therefore, we only consider the Skip-gram model with negative sampling and use Google’s
ngram dataset (Brants and Franz 2006) to train the word2vec model (Ginter and Kanerva 2014),
where the size of an embedding is a 200 dimensional vector, the text is normalized using the
default normalization provided by the word2vec toolkit, and we use a window of 5 context
words for the Skip-gram.

4.2 Building the Domain Dependent Corpus

Although our main focus is open domain, we study how does conditioning generation with a
domain dependent coherence is possible. As previously described, we require domain depen-
dent structure and coherent discourse structure. Thus, we use a collection of documentaries of
the physics domain for our domain dependent part.
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Furthermore, documentaries provide domain dependent structure and coherent discourse
implicitly in the scenes that compose the documentary. Therefore, we consider that each scene
can be regarded as an individual document, as each scene not only compresses enough infor-
mation regarding the subject of the documentary and can be more detailed about a particular
context of the documentary’s subject, but also, provides a coherent domain dependent dis-
course structuring, each scene is coherent with respect to itself and to the documentary’s sub-
ject. To achieve this, we propose an approach for detecting scenes in subtitles and extracting
them from the original documentary.

4.2.1 Scene detection

Documentaries are, intrinsically, segmented into scenes: some scenes are longer and, others, are
shorter. However, regardless of the duration, scenes can be distinguished by their transitions,
this is, the time between one scene and another is an explicit marker of the scene. Although
the boundary of each scene can be softer or crisper, we propose dividing the scene by using
parameters that measure the time between subtitles items (each time alignment in a subtitle)
and the distance between different scenes .

Therefore, we exploit the nature of documentaries to collapse the subtitle script (srt) into
a new one with merged items. We achieve this through 3three functions, find subtitle (algo-
rithm 1), merge subtitles (algorithm 2), and clean text, which removes tags from the text. The
algorithm consists of finding a minimum length subtitle item and then merge until the criteria
for stopping is met, the distance between the current merged item and the next item exceeds a
threshold. Note that each new subtitle preserves the original time frames.

Finally, we perform this merge procedure with a fixed minimum length of 500ms and with
a distance ranging from 100ms to 950ms. This step was done to analyse how the boundaries
vary and how significant is the parameter.

Algorithm 1: Find nearest Subtitle
Input: input file,from t, to t, lo
Output: scene text, index merge
i← lo;
while i < size(input file) do

scenei ← input file[i];
if scenei start >= tot then

break;

if (scenei start <= fromt) and (tot <= scenei end) then
return scenei text, i;

i← i+ 1;

return “”, i;
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Algorithm 2: Merge Subtitle
Input: input file, min length, distance
Output: subtitle
begs← item start for item in input file;
ends← item end for item in input file;
j ← 0;
o start← 0;
o text← “”;
for i← 0 upto size(begs) do

start← begsi;
if o start == 0 then

o start← start;

end← endsi;
if end− start > min length then

text, j ← find subtitle(input file, start, end, j);
text← clean text(text);
if size(text) == 0 then

if o text > 0 then
item← Subtitle Item(0, o start, end, o text);
add item to out;

o start← 0;
o text← “”;
continue;

if size(o text) == 0 then
o text← o text+ “ ” +text;

else
o text← text;

if i+ 1 < size(begs) then
next start← begsi+1;
if (next start− end) > distance then

if size(o text) > 0 then
item← Subtitle Item(0, o start, end, o text);
o start← 0;
o text← ””;
add item to out;

else
if len(otext) > 0 then

item← Subtitle Item(0, o start, end, o text);
o start← 0;
o text← ””;
add item to out;

clean indexes(out);
return out;
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4.2.2 Extracting scenes from documentaries

After all the scenes are merged for all different parameters, we have to extract the scenes and
create new documents containing only each scene. The process of extracting scenes depends
of three parameters, minimum number of words, minimum duration and maximum duration.
The first two parameters ensure that leftover text without any relevant contribution from the
previous process is eliminated. For instance, sometimes in documentaries instead of spoken
language the authors use sounds, such as crackling, to illustrate a concept; those sounds are
maintained as they usually fulfils the time constraints. The last parameter is optional and is
responsible for ignoring scenes whose boundaries were so crisp they end up collapsing most
(if not all) of the original documentary. To understand the effect of max parameter we anal-
ysed the previous step (merging scenes) and how many documents were poorly merged. This
parameter was set to 2000ms, while the first and second were set to 5 and none or 100000ms,
respectively.

This process can be disk intensive (the minimum number of documents is now 30000)
and we create a new corpus for each of the parameters from this step and from the previous
one, which are highly parallelizable. Therefore, we used Condor to parallelize the process of
building the corpus. Briefly, Condor is a software framework for managing the workload on
a dedicated cluster of computers, i.e., Condor manages submitted jobs and executes them in a
cluster of computers by assigning each job to each own computer.

4.3 Corpus Analysis

Creating the corpus influences all the remaining experiments, as such we evaluated how the
scene detection, and consequently the scene extraction, performs with different parameters.
In Figure 4.1, we depict how using different gap ms parameters, varying from 100 to 950ms,
affects scenes duration distribution, where the x coordinate represents the length in minutes
and the y coordinate represents the frequency of occurrence. Moreover, we can observe that
the behaviour of the gap is the expected one, as when the parameter is a small value lesser
scenes are grouped, which leads to having a greater number of small scenes. However, there is
a pattern in the frequency: from 100ms to 200ms the gap is not stable and the number of small
scenes tend to oscillate from one value to the next, then from 225ms until 950ms the decay is
smoother, which leads to conclude that the gap stabilizes and the decay of frequencies is just a
natural consequence of the gradual increment of less distant scenes (more scene collapse).

Furthermore, although the frequency analysis leads us to reason that this parameter should
be at least 200ms, we look at the mass of the curve (the integral) to further understand how the
parameters influence the boundary detection. Thus, in Figure 4.2, we depict how the variation
of the parameters affect the mass of the curve, where the x and y coordinate still have the same
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Figure 4.1: Corpus frequencies distribution with different gap parameters.

representation as before but now we present the mass of the frequency. Analysing the previous
Figure, not only, the range from 100ms to 200ms presents the same result, very distant from
the other intervals, but also, the mass of the curve concentrates in shorter scenes and decays
very fast. In contrast with this range, the 225ms to 950ms range proves to concentrate the mass
in a very similar way, with short to medium size scenes, while decaying smoother than the
previous range.

4.3.1 Discussion

The results of the analysis of the scenes merging provide a way of detecting how well we
are finding the boundary between the scenes. After analysing Figures 4.1 and 4.2, we con-
clude that using intervals with a value less than 200ms finds very soft boundaries and leads
to shorter scenes, while intervals greater than 200ms lead to incrementally crisper boundaries
and more scenes merged. Therefore, we test all gap scenes corpus to understand the effects of
this boundary detection in the topic models, and consequently in the NLG modules.

Finally, for the scenes extraction, we set the parameters for minimum length to 2000ms and
minimum words to 3, to clean noisy scenes. Another relevant aspect, is that in Figure 4.2 there
is a clear cut after 100 scenes, we do not present documents longer than 100 scenes as the mass
is negligible. Moreover, the maximum duration parameter of the extraction is tested using the
maximum duration of 100000ms. This parameter is further discussed in section 4.4.
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Figure 4.2: Corpus mass distribution with different gap parameters.

4.4 Topic Modelling

Using a topic model provides a natural method for grouping concepts in a collection. This way,
we can model the fine-grained relations of our domain dependent corpus. From the different
topic models we chose LDA due to its wide application in the literature and the previous ap-
plication of this model in the subtitles domain (Aparı́cio et al. 2016). Furthermore, we use the
LDA implementation provided by Blei et al. (2003).

To perform an LDA estimation over our collection we need to create the vocabulary of the
collection, ignoring stop words, and, then, create for each document of the collection the bag-
of-words of the scene’s vocabulary. After creating the vocabulary, we estimate the model using
a random topic initialization, an α of 0.3, and vary the number of topics the model should esti-
mate. We perform the same conditions for 50, 100, and 200 topic models. Finally, we perform
inference over a collection of documents from a test set. All experiments were conducted using
Condor to speed up the process of automatically obtain the results.

Furthermore, we then produce the top N words for each topic for each topic model. In
addition, we also produce a topN words conditioned on the word frequency in the vocabulary
(this way, ignoring very frequent words which may pollute the topics quality by being too
frequent). An illustrative example is depicted in table 4.1.
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Gap Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
100ms sky

center
night
radio
bright
supernova

star
hot
death
closer
white
extremely

years
billion
ago
millions
ancestors
astronomy

built
person
areas
crew
signals
laboratory

distance
kilometers
means
total
completely
path

Table 4.1: Latent Dirichlet Allocation 6 words from top 20 example, from a model with 100
topics with 300ms gap.

4.4.1 Analysis

Section 4.3 lead us to analyse how does the merging and extracting parameters affect the vo-
cabulary and the number of scenes. In Table 4.2 we depict how the vocabulary size and num-
ber of scenes differ when the boundary is incrementally crisper. Moreover, the number of
scenes decreases with the increment of the merging parameters, even more accentuated when
the 10000ms cutoff is applied. This is explained by boundaries being incrementally crisper,
which leads to shorter scenes being merged more frequently. Furthermore, the vocabulary size
oscillates, which can be explained by the extracting parameters: softer boundaries will have
shorter scenes that when extract may be discarded; while crisper boundaries will have short to
medium scenes preserving more vocabulary. In addition, when the cutoff is applied, the num-
ber of scenes discarded increases but not significantly, in contrast with the vocabulary, which
decreases significantly when the cutoff is applied.

To understand the effect of the vocabulary and the number of scenes, we estimate LDA
models for all the boundaries and analyse the quality of the topics by computing the top 10

and 20 words for the different 50, 100, and 200 topics models. In Tables 4.4, 4.5, and 4.6 we
depict the top 10 words of the first five topics for four different topic models.

Furthermore, we evaluate how many overlapping words there are between topics, so as to
understand whether the topic model is performing a softer or crisp boundary between topics.
Table 4.3 presents max number of word co-occurrence in different topic models. From Tables
4.3 to 4.6, we can conclude that each of the models have a crisp boundary, as the maximum
word topic co-occurrence is 14 for 50 topics in scenes merged with a gap of 500ms with cutoff
and 900ms. Although each model can be used for further experiences with sentence planning
and surface realization, we only consider the 300ms gap merged scenes with 100 topics, as its
behaviour is regular both in the corpus analysis and in the LDA topic model analysis.

4.5 Summary

We described our dataset requirements: coherent discourse structure, domain discourse struc-
ture, and a large domain independent vocabulary, and which corpora meets these require-
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Scenes Gap (ms) Vocabulary Size Number of scenes
100 9574 62035
100 * 9052 61635
200 9635 52654
200 * 8993 52597
300 9660 44326
300 * 8987 44058
400 9655 42571
400 * 8984 42107
500 9658 40832
500 * 8965 40357
600 9660 39510
600 * 8945 39025
700 9660 38389
700 * 8938 37895
800 9661 37178
800 * 8919 36665
900 9662 36087
900 * 8896 35563

Table 4.2: Merged Scenes Statistics (* cutoff of 100000ms).

Gap (ms) 50 topics 100 topics 200 topics
100 2 2 2
100 * 2 2 2
200 4 2 2
200 * 3 2 2
300 12 3 4
300 * 5 4 2
400 13 3 3
400 * 9 2 2
500 10 3 2
500 * 14 2 3
600 10 3 2
600 * 5 2 2
700 12 6 2
700 * 12 2 3
800 13 4 2
800 * 10 2 2
900 14 6 3
900 * 13 3 2

Table 4.3: Word topic co-occurrence (* cutoff of 100000ms).
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Scenes Gaps (ms) Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
100 galaxy

large
center
milky
picture
scale
radio
group
region
telescopes

science
idea
lead
blood
ideas
open
rest
bad
minute
carry

live
ways
search
longer
happening
food
carbon
result
intelligent
recently

kind
sky
night
exist
making
built
discover
machines
remains
model

matter
made
place
dark
call
existence
elements
birth
extremely
hold

100 * universe
end
call
beginning
god
worlds
existence
birth
simply
places

kind
spacecraft
living
nasa
molecules
vast
chemistry
kinds
book
engineers

back
important
process
days
natural
eyes
research
food
absolutely
difference

galaxies
cosmic
narrator
happened
asteroids
comets
distant
violent
orbits
asteroid

thing
great
waves
distance
build
sound
learn
fly
middle
knowledge

200 matter
dark
amount
enormous
crater
ordinary
antimatter
station
straight
wide

brain
thought
information
moment
radio
brains
room
hear
freeman
activity

water
surface
rock
liquid
deep
cold
inside
air
molecules
titan

human
species
death
evolution
animals
dinosaurs
plants
creatures
beings
humans

star
called
massive
bigger
turned
named
rest
challenge
zone
rapidly

200 * lot
asteroid
happened
evidence
event
land
dinosaurs
clear
named
person

nasa
spacecraft
mission
apollo
flight
degrees
finally
minutes
crew
rocket

today
high
created
telescope
looked
interesting
chance
state
city
sugar

things
understand
change
effect
simple
begin
low
slowly
run
level

inside
deep
ocean
vast
exist
structure
happening
image
sunlight
hidden

Table 4.4: Top 10 words of Latent Dirichlet Allocation 50 topic models (first five topics) for
different gaps (* cutoff of 100000ms).
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Scenes Gaps (ms) Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
100 galaxy

milky
astronauts
changed
group
starting
andromeda
proposed
powered
copernicus

world
science
true
lead
decades
range
carry
straight
fiction
war

result
detect
nebula
suddenly
spinning
died
occurred
fine
dying
device

kind
scale
evolved
model
stand
unlike
producing
microscopic
creature
proved

place
call
atoms
elements
extremely
hold
heavy
special
pattern
pass

100 * universe
place
call
beginning
existence
birth
expanding
giving
creation
imagined

kind
complex
molecules
university
chemistry
organic
nucleus
failed
grand
europe

process
days
order
crew
weather
absolutely
difference
changing
desert
engine

jupiter
cosmic
happened
asteroids
comets
distant
neptune
uranus
reaches
giants

understanding
waves
fast
key
sound
amazing
knowledge
fit
slightly
archimedes

200 measure
camera
minute
path
straight
familiar
cut
tons
trees
lower

looked
control
top
radio
room
send
hear
bottom
signal
signals

water
scale
volcanoes
active
volcanic
lava
craters
molten
volcano
flows

million
evolution
search
dinosaurs
intelligent
including
cats
rare
extinction
fate

scientists
found
ball
named
major
bacteria
challenge
zone
determined
community

200 * asteroid
happened
event
land
dinosaurs
named
brought
including
belt
extinction

spacecraft
rocket
seconds
launch
shuttle
active
program
engine
meant
color

fact
created
interesting
direction
gave
possibility
satellite
mountain
paper
fraction

things
understand
change
effect
simple
begin
control
low
remember
antimatter

deep
millions
ocean
vast
liquid
happening
sunlight
oceans
hidden
beneath

Table 4.5: Top 10 words of Latent Dirichlet Allocation 100 topic models (first five topics) for
different gaps (* cutoff of 100000ms).
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ments. We used two corpora, a documentaries subtitles corpus, which provides the first two
requirements, and a large domain independent corpus, which provides the last requirement.
To represent our large vocabulary we chose using word2vec, which provides dense word rep-
resentation. Furthermore, we train the word embedding using an ngram model (Brants and
Franz 2006), which have demonstrated the ability to maintain the good performance for mod-
elling words distributions (Ginter and Kanerva 2014).

To address the domain dependent requirements, we built our own corpus by exploiting the
temporal nature of documentaries: detecting scenes. Scenes provide a natural way of having
domain dependent discourse structure, as they address a concept of the documentary, as well as
a coherent discourse struture, with respect to yhemselves and the documentary. Furthermore,
we describe our approach in algorithm 2, where we detect the gap (inms) between the subtile’s
time alignments and collapse items which are at a distance greater than the gap from each
other, until the gap is met or there are not more items. We analyse how the parameters affect
the corpus by looking at the frequencies and mass frequencies of the scenes durations.

Finally, we estimated different topic models using the subtitle’s scenes and evaluate how
does the domain dependent corpus affects the vocabulary and number of scenes available for
performing the model’s estimate. Moreover, we analysed how does the corpus affect the qual-
ity of the LDA models and concluded that the topic models have a crisp boundary, where the
maximum word co-ocurrence is not significant, specially for 100 and 200 topic models.
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Scenes Gaps (ms) Topic 1 Topic 2 Topic 3 Topic 4 Topic 5
100 grow

word
starting
laser
ship
proposed
photons
quasar
powered
stranger

lead
straight
recently
growing
involved
floating
tissue
lucy
mix
fortunately

imagine
death
oceans
explanation
zone
dying
habitable
odds
crab
earthlike

bigger
unlike
bones
tons
creature
smallest
searching
experienced
peak
expanded

fact
god
hand
special
easy
cut
steve
chris
bound
suggest

100 * narrator
began
orbits
extreme
creation
kepler
destruction
quest
cycle
managed

thing
greater
missions
arrived
blasts
stuck
blew
lhc
accelerator
quarks

back
reveal
kill
sign
battle
jim
british
sail
luminous
frank

happened
asteroids
comets
neptune
uranus
giants
lucky
stretched
odd
stretching

key
sound
intelligence
compared
knowledge
language
written
limit
gods
era

200 major
camera
familiar
fate
cost
concentrated
dollars
alternative
service
pile

top
bottom
smell
train
sleep
subject
sees
response
sit
moche

rock
volcanoes
active
volcanic
craters
lava
molten
recent
volcano
geological

fact
evolution
dinosaurs
couple
catch
wonders
village
debate
genome
garden

called
key
essentially
zone
immediately
dramatic
habitable
balls
technical
claims

200 * sense
slowly
patterns
profound
deal
situation
groups
molecular
focus
mine

ocean
eye
sunlight
visible
trillion
naked
observable
rainbow
fastest
heats

finally
months
pieces
explanation
provided
national
foundation
park
equally
matters

worked
solution
vision
driving
secret
recent
presence
patients
reaching
achievement

ice
cold
molecules
face
gases
sight
frozen
polar
freeze
snow

Table 4.6: Top 10 words of Latent Dirichlet Allocation 200 topic models (first five topics) for
different gaps (* cutoff of 100000ms).
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5Sentence Planning

In this chapter and the following, we describe our approach to the generation problem, namely
our approach to sentence planning, micro-content planning, and realization. Our concern in
this chapter is the sentence planner, while in the next chapter we focus on the micro-content
planning and realization.

Sentence planning is, usually, responsible for determining the content and structure of the
response. As noted by Reiter and Dale (2000), this component is the most important module
for many applications, as determining the content (and structure) of the response can be more
important to users than the naturalness of the response. Moreover, we approach the content
determination problem and structure of the response in different modules, not exclusive to the
sentence planner, i.e., we use the sentence planner to determine the content of the response and,
implicitly, the structure. However, we explicitly determine the real structure in a micro-content
planner which is described in the next chapter.

In this chapter, we present our approach towards natural language generation and open
domain, namely for the sentence planner module. We approach the generation problem in a
statistical fashion considering the conventional pipeline components as two distinct problems,
optimizing each one separately instead of end to end. The reason for approaching the problem
this way was to evaluate how each module behaves, more concretely to study if the planner
can learn how to determine the content of the response in the domain, while the micro-planner
and surface realizer can learn to structure a coherent response and present the response using
a generic vocabulary conditioned by the domain. The conventional architecture of Reiter and
Dale (2000) is depicted in Figure 6.1, with the contributions for each of the modules.

We approach the problem in the context of building an explainer, given a question about
a concept in a domain produce the necessary utterances to explain that concept. This can be
situated in a question-answering problem. However this is not the case as the explainer does
not simply search for facts in a knowledge base and present them, rather, the explainer should
provide an explanation for the questions using a coherent domain dependent discourse, yet
addressing the facts as well.

The architecture proposed can be regarded as an encoder-decoder architecture (Cho et al.
2014) where the sentence planner is responsible for encoding what should be said in a con-
text vector, determining the content of the response, which is represented by a topic multino-
mial distribution, and the micro-planner and surface realizer are responsible for decoding this
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distribution into utterances by determining the content structure and perform the linguistic
realization.

Figure 5.1: Full architecture.

Our sentence planner, learns how to map questions, in a large vocabulary, into a domain
specific domain, i.e., our sentence planner has one of the tasks from the pipeline conventional
architecture, determining the content in the domain. The sentence planner architecture is de-
picted in Figure 5.2. In addition, for the domain independent vocabulary we use word embed-
dings, while for the domain part of the planning we use topic models, Figure 5.3.

Figure 5.2: Sentence Planner architecture.
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Figure 5.3: Topic model. Domain dependent part of the sentence planning.

5.1 Mapping Generic Embeddings to Topics

The sentence planner must determine the content of the response, and implicitly the struc-
ture by being able to map from a communication objective into a non-linguistic representation.
Therefore, in our approach we consider the communication objective is implicit in the ques-
tion and the module has to determine the content, the topic distribution, that characterizes the
adequate response to the question.

Our sentence planner is a generic mapping from word representations in a generic space
into topic distributions, i.e., the sentence planner learns how words should be encoded into
a topic distribution (analogously to what a topic model does). Therefore, our focus on the
sentence planner is how to map generic word representations into a topic distribution, i.e., how
to perform a mapping from an already dense space which preserves relationships between
words into an even denser space which models the distribution of words in a topic space.
This can be viewed as lowering the dimensionality of one space to fit into another one and
determining the response content in a specific domain.

The contribution of this mapping is to refine the relationship of the words in the higher
dimension into one containing more fine-grained relations, while preserving relationships of
the words in the given domain. Therefore, one can simply replace a given domain by another,
thus, using a domain-independent method for refining words relationships. Furthermore, ap-
proaching the sentence planner using a statistical approach, allows to model fine-grained rela-
tions with more flexibility than using a template-based or the pipeline conventional approach
planning.

Learning how to map from the question into the topic distribution can be regarded as de-
termining the response content: the response must be constrained by the topic distribution as it
provides a way to determine which parts are important for the response. While performing re-
shaping the content in the domain space back to the original space means that the words in the
generic space are conditioned by the topic model and preserve the fine-grained relationships
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of the domain. This is addressed in the next chapter 6.

Finally, in Figure 5.2 the question is transformed from the discrete space of words into
the domain-independent space, which is achieved by transforming each word using word2vec
trained over a large generic corpus. Next, the embedded question models, implicitly, the com-
municative goal and the EmbeddedQuestion2Mix is our sentence planner, which maps from
the question space (word embeddings space) into the topic, domain specific, space. Thus, de-
termining the content of the response in the domain space.

5.2 Experimental Setup

As already mentioned in section 2.3.1, DNNs can learn arbitrary mappings between two differ-
ent spaces. Thus, they fit perfectly in this problem, where we want to map from a generic word
embedding space into the topic latent space. Thus, we approach the sentence planning using
deep learning, namely using feedfoward DNNs and CNNs, to learn a one-to-one mapping,
more concretly, to perform the mapping between the generic space into the topic space. In ad-
dition, we use word2vec, for the generic space, and LDA for the topic space. We evaluate three
different approaches to perform the mapping from the word embeddings (question) into the
topic distribution (content determination): a deep feedforward network and two convolutional
networks (both 1D ConvNets).

In order to train the networks we conducted two experiments, which are influenced di-
rectly by the LDA results. First, we divide the document collection into train and test and
perform the model estimate over the training set exclusively, which is then used on the sen-
tence planner as the training set (10% of the training set is used as validation), and evaluate
with respect to the LDA inference, comparing this way previously unseen document for both
models. Second, we use LDA to infer the topic distributions of the previous estimate model
and train the planner with the inferred topic distributions (10% of the training set is used as
validation), i.e., instead of using the internal LDA model directly we train with an approxima-
tion given by the inference, which is closer to what the planner should predict as it is closer
to the LDA inference. Furthermore, we evaluate the models by using the test set which both
LDA and the network have never seen. The collection division into train and test is performed
randomly.

Summarizing, in the first experiment, the planner learns a mapping from the embeddings
space to the LDA estimate space and predicts distributions never seen in the LDA estimation
(nor by the network). In the second experiment, the planner learns a mapping from the em-
beddings space to the LDA inference space, as the train set is the inference of the LDA estimate
from the second experiment.

All models are trained to optimize the mean squared error and are compared with respect



5.2. EXPERIMENTAL SETUP 59

to the LDA predictions using the cosine similarity:

MSE =
1

n

n∑
i=1

(Ŷ − Y )2 (5.1)

cos(θ) =
Y · Ŷ

‖Y ‖2 · ‖Ŷ ‖2
. (5.2)

Both experiments are evaluated with different models: first, we map a representation of the
document into the topic distribution by summing all the word embeddings of the vocabulary of
the document; and, second, we use a concatenation of the word embeddings of the vocabulary
to map into the topic distribution. For first scenario we used the feedforward network and
one of the convolutional networks and for the second we used the remaining convolutional
network.

For the first scenario, the feedforward train is straightforward, we feed the network the
representation of the document and predict its distribution. However, for the convolutional
network we have to set the hyper-parameters to guarantee that the stride is equal to 1, so that
the network looks at the only region of space available, the intuition is that the network will
learn which dimensions of the word embeddings better describe the sentence’s representation.

In contrast with the convolutional approach from the first scenario, in the second scenario
we feed the network a concatenation of the vocabulary words. Thus, in this scenario, the net-
work learns which features best represent the vocabulary words with respect to the topic dis-
tribution. In addition, this approach requires the zero-padding discussed in section 2.3.2, so
that the network can look at different regions including near the border.

Finally, all models were trained using the minibatching technique, which is further dis-
cussed in 6.2.1. In addition, we also apply the dropout technique to prevent overfitting. We
use a CNN which takes as input the bag of words of the question and an DNN and a CNN
which take as input a representation of the bag of words (the sum of all word embeddings).
Moreover, we synthesize the questions by using the vocabulary words in the scene and map
into their corresponding topic distribution from the LDA. This can be regarded as performing
the topic model’s inference using neural networks, while mapping from the embeddings space,
domain independent, to a topic space, domain dependent.

Furthermore, we experiment different DNNs, namely feedforward and convolutional net-
works, which are tested with different hyper-parameters, we vary the number of layers and
hidden units per layer, as well as the number of epochs (note we use early stopping but it de-
pends on the number of epochs). In addition, all the networks run on Graphics Processing Unit
(GPU), namely GeForce GTX TITAN X (Nvidia Corporation 2015), and were developed using
the machine learning toolkit keras (Chollet 2015).
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5.3 Experimental Results and Discussion

Our sentence planning approach relies on the power of DNN to learn a mapping between an
input space and an output space, i.e., our planning approach maps from a domain indepen-
dent domain into a domain dependent domain. This can be regarded as projecting the generic
language vocabulary into a more fine-grained vocabulary, which possess more specific words
relations than the generic vocabulary. As already described, we perform this mapping by learn-
ing word embeddings into a topic model space.

To learn the mapping we conducted two experiments: first, the network learns the topic
model estimate and infers never seen documents; second, the network learns the topic model
inference and infers never seen documents. This two scenarios are an approximation of the
best possible scenario: partitioning the dataset into three parts and train the topic model with
the first part, train the network with inferred distributions from the second part, and evaluate
both with the third partition. Nonetheless, we show that using inferred estimate distributions
provides an approximation for learning the topic model.

The sentence planner was trained to predict the topic model distributions from word em-
beddings, which synthesise a question. All experiences map from the word embeddings of
the vocabulary used to train the LDA models into the topic distribution space. However, LDA
models can perform inference over the topic models, which leads us to test how does the net-
work behaves compared to the LDA inference and, further, how do the hyper parameters affect
the network’s prediction.

We perform the LDA estimation over the training set and the inference over the test set,
while the network learns the model from the training set (where 10% is for validation) and
predicts the test set. In Figures 5.4a, 5.4b, and 5.4c we depict an histogram of the cosine similar-
ities frequency, while in Figure 5.5, we depict the best results for each one of the networks. We
can regard these results as the network trying to learn to estimate the topic model and predict
distributions close to the estimates.

In order to mimic the LDA inference, the network must be able to predict the inference
space of the topic model, instead of its estimate – although the estimate provides a ceiling
of the topic distributions. Thus, we train and evaluate how do the networks perform when
learning the inference of the LDA model, even if it is the model’s estimate inference. This way,
we can understand how does the network learns the topic model’s inference by comparing the
distributions predicted with the expected distributions of the inference. Moreover, this can be
regarded as the network learning how to sample from the topic model, i.e., the network learns
a mapping between the embeddings space and the LDA inference space. In Figures 5.6a, 5.6b,
and 5.6c we depict an histogram of the cosine similarities frequency.

In Figures 5.7a, 5.7b, and 5.7c we depict a zoom in the range of 0.7 − 09 of the similarities
curve. As expected, the networks’ predictions yield better results when the number of layers is
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(a) Feedforward DNN vs LDA. (b) CNN vs LDA.

(c) CNN with vocabulary vs LDA.

Figure 5.4: Cosine similarity frequency of sentence planner predictions with respect to LDA
inference. Mapping embeddings to LDA estimate and performing inference over previously
unseen scenes. Sentence planner learns the estimate model. M denotes the max epochs, HS the
FeedFoward hidden sizes, and C the convolutional filters size.

incremented, as all the best results for the mean and area under the curve are from the deepest.
This behaviour is more evident for the feedfoward DNN and CNN with “sequence” (vocabu-
lary), while the CNN has a very regular behaviour for all the parameters and it is not easy to
differentiate which is better. Thus, the number of convolutional layers in the CNN without vo-
cabulary did not yield a very significant effect, which can be explained by the number of filters
in the first layer already selecting the best features. In contrast, the CNN with vocabulary has
the worst individual performance of all the networks, where the number of convolutional lay-
ers affects negatively when the number of epochs, and consequently early stopping, increases.
Furthermore, in Figures 5.8a, 5.8b, and 5.8 we depict the mass of the frequencies, the area un-
der the curve. From the previous Figures, we can conclude that, again, deeper networks yield
better results, even if all have a similar behaviour, except for the CNN with vocabulary, where
we find the worst results.

Finally, in Figure 5.9 we, depict the best results for the three networks learning the infer-
ence. In addition, we also depict the masses and zoom in the top similarity curve for the best
approaches in Figures 5.10 and 5.11, respectively. As can be observed, every approach is close
to the others, as the frequencies are very similar, which implies that all the methods are learn-
ing the mapping from the embeddings space to the topic’s inference space. Again, as expected,
deeper networks perform better when learning the mapping from the embedding space to the
topic space. In addition, although the CNN with the vocabulary has the maximum number of
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Figure 5.5: Sentence Planner vs LDA Inference, cosine similarity frequency. Best networks
results for estimation learning, where FF is a feedfoward network, cnn is a CNN, and CNNSEQ
is a CNN with vocabulary “sequence”.

cosine frequencies of the expected value, it decays faster than the other approaches. The best
approach is the CNN approach, even if not significantly better.

A comparison between the worst performing network learning the inference and the best
performing learning the inference is depicted in Figure 5.12. As expected, using the inference
as train leads to better performances, as the model learns directly the inference model and
predicts as close as it can to the inference space, while the first scenario approach predicts
closer to estimates. Furthermore, the second scenario shows that is possible to train with an
approximation of the inference space, without yield worse results.

Moreover, learning to map from the embeddings space to the topic space does not yield
worse results than performing directly the LDA inference. This way, the method we use, not
only, is more flexible, as the word embeddings are a continuous dense space and the vocabulary
in the LDA model is a discrete word space, but also, provides a way for mapping a generic
embedding space into a lower dimension topic space.

5.3.1 Discussion

The main task of the sentence planner is to determine the response content and the structure
of the response. However, the explicit structure of the response is addressed by the micro-
content planner (chapter 6.1). Therefore, our approach to sentence planning has as its main task
modelling the communicative objective and determine the content of the response in a domain
specific space by mapping a (synthesized) question from a domain-independent question into
a topic distribution (domain-dependent), i.e., we approach the planning as determining the
domain content by mapping from a question in a embedding space into a response in the topic
model space. Therefore, the sentence planner maps from a generic embedding space into a
more fine-grained domain space by mapping word representations into topic distributions.

Therefore, the sentence planner maps from a generic embedding space into a more fine-
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(a) Feedforward DNN vs LDA Inference. (b) CNN vs LDA Inference.

(c) CNN with vocabulary vs LDA Infer-
ence.

Figure 5.6: Cosine similarity frequency of sentence planner predictions with respect to LDA
inference. Mapping embeddings to LDA inference and performing inference over previously
unseen scenes. Sentence planner learns the inference model.

grained domain space by mapping word representations of a (synthesized) question into topic
distributions. The main advantage of performing the inference via DNN instead of LDA is
the mapping from the generic word representations into a more fined-grained representation,
which the LDA can not provide as it is constrained on the collection’s vocabulary. One can
argue that the LDA model could be trained using a larger corpus with more vocabulary, how-
ever by doing so we would lose the fine-grained relations that the LDA provides in the specific
domain. Our claim is that this method is domain independent and given any collection of any
domain it is possible to train both the LDA and DNN models modularly. Furthermore, using
transfer learning methods, ensemble methods, or learning the context directly from data could,
potentially, allow to better generalize to new unseen domains.

There are limitations in the experiments conducted, first, and foremost, we use two sce-
narios that approximate the best possible scenario: divide the collection into three partitions,
train the topic model with a representative set of the collection (first partition), infer the sec-
ond partition of from previously unseen documents and train the network with the inferred
distributions, and, finally, a held out set to evaluate the planner’s performance. This would be
the fairest approach. However, due to the size limitation of the domain dependent part of the
dataset, we used an approximation, infer the model’s estimate. Second, during the experiments
we did not use wider networks and privileged a deeper architecture. Exploring all the space
of hyper parameters is not feasible, therefore we limited our approach by evaluating deeper
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(a) Feedforward DNN vs LDA Inference. (b) CNN vs LDA Inference.

(c) CNN with vocabulary vs LDA.

Figure 5.7: Zoom in the range 0.7-0.9 of the cosine similarities curve, sentence planner vs LDA
inference. Sentence planner learns the inference model.

networks.

5.4 Summary

We described our approach to the generation problem to address the open domain task. More-
over, we focus in this chapter the sentence planning, while the next chapter focus the micro-
content planning and realization.

Furthermore, we described our sentence planner main task: determining the content of the
response in a statistical way, i.e., we use statistical methods for mapping from a generic, large
vocabulary, space into a domain specific space, in our case from generic word embeddings into
a physics domain. Moreover we addressed generation in a statistical way, to reduce the number
of hand-crafted rules and parameters, and approach sentence planning using DNN and CNNs.

Ou planner depends of two different spaces, first a generic large vocabulary space and a
domain specific space. For the large vocabulary we used the Google’s ngram (Brants and Franz
2006), which covers a large domain independent space, while for the domain specific requisite
we used a topic model, namely LDA.

Finally, we evaluated the performance of the mapping between the synthesized question
embedding space into the domain topic distribution, comparing the cosine similarity between
predicted, never seen, documents. To achieve this, we used two scenarios: first, the networks
learn the model estimate space; second, the networks learn the inference space, an approxi-
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(a) Feedforward DNN vs LDA Inference. (b) CNN vs LDA Inference.

(c) CNN with vocabulary vs LDA Infer-
ence.

Figure 5.8: Mass of the cosine similarity frequency of figures 5.6a, 5.6b, and 5.6c. This is the
mass frequency of the cosine similarity between the sentence planner and LDA Inference, thus
can be regarded as area under the curve.

mation. We concluded that using the networks to perform this mapping did not yield worse
results than using the LDA inference directly, which implies that learning a specific domain
from a domain-independent vocabulary is possible and provides more flexibility than using
the LDA inference directly.

Figure 5.9: Sentence Planner vs LDA Inference, cosine similarity frequency. Planner learns the
inference model. Best performing networks learning inference.
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Figure 5.10: Zoom in the range 0.7-0.9 of the cosine similarities curve, sentence planner vs LDA
inference, from Figure 5.9. Sentence planner learns the inference model.

Figure 5.11: Mass of the cosine similarity frequency of Figure 5.9. This is the mass frequency of
the cosine similarity between the sentence planner and LDA Inference, thus can be regarded as
area under the curve.

Figure 5.12: Comparison between the best estimation and worst inference learning.



6Micro Planning and

Realization

In the previous chapter we described our approach to the generation process in open domain,
namely the general overview and the sentence planning. As described in the previous chapter,
our sentence planner only defines explicitly the response content, thus, in this chapter we focus
on micro-content planning, determining the structure of the response, and realization, deciding
which words should be presented.

We consider here that the micro-content planner is responsible for determining the re-
sponse structure, i.e., the micro planner determines which sentences should be generated in
a non-linguistic representation. Thus, the micro planner is a continuation of the sentence plan-
ning and still represents the problem in a non-linguistic and domain specific way, in fact, the
micro-planner refines the determined content to specify more fine-grained relations.

Furthermore, the surface realization is responsible for given the abstract representation
from the previous steps, transform that representation into words. Thus, the realization is
responsible for deciding which lexical items should be chosen to map from the abstract repre-
sentation to the words.

As previously mentioned, we address the generation process in a statistical way, thus, both
micro-content planner and realization are regarded as an optimization problem. Furthermore,
we consider that these modules should be discussed together as we addressed the components
both jointly and individually. The conventional architecture of Reiter and Dale (2000) is de-
picted in Figure 6.1, with the contributions for each of the modules.

Figure 6.1: Full architecture.
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6.1 Micro Planning and Realization

Our micro-planner is responsible for determining the structure of the response explicitly, while
modelling fine-grained relationships by learning a mapping from the document topic distribu-
tion into its sentences topic distributions. Surface realization determines linguistic content from
non-linguistic content, in our case, the component should learn a mapping between a topic dis-
tribution and the words which best realize that distribution, i.e., after shaping the generic space
into the domain space, we want to realize the words from the generic space conditioned on the
domain fine-grained relationships.

We use two methods for micro-planning and surface realization, which perform the map-
ping at document and word level: the first jointly optimizes the process; the second divides the
problem into two sub-problems. This way, these approaches learn how to map the context into
a sequence of sentences which in turn maps into a sequence of words. To address the inter-
sentence relations of a document we learn the mapping between the topic distribution that
the sentence planner should produce and model. This way, not only, the learning the struc-
ture of the response, by determining which topic distributions best represent the sentences that
should be produced, but also, learning which words best suit the topic distributions. Therefore,
we use two approaches: jointly optimize both document and sentence structure using a hierar-
chical approach; splitting the problem into two parts, first, optimizing the content planning, by
learning a sequence of topic distributions, and, second, we optimize the words in each of the
previous sequence.

6.1.1 Micro-Planning and Realization

In this approach, we divide the realization into two steps: first, decide the structure of the
final answer, addressing the inter-sentence relations; and, second, given the structure, i.e., the
content, perform the realization into a linguistic structure.

Figure 6.2 depicts the first step, while figure 6.3 depicts the second step. Dividing the
problem into two steps has as its main advantage allowing to scrutinize the result of the content
planning before performing the word realization. This way, we can understand if the inter-
sentence relations are addressing the content selection as they should and only then perform
the word realization.

6.1.2 Hierarchical Naive Approach

This approach models the micro-planning and realization problem as jointly learning the map-
ping between the topic distribution and the response structure, as well as mapping from the
response structure into the words. Thus, the hierarchical naive approach models the micro-
planner and realization by determining which sentences should be realized and which words
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Figure 6.2: Content planning. Determining the structure of the explanation (Mixture Demulti-
plexer).

should be realized in each sentence. Moreover, this approach is the approach in Figures 6.2 and
6.3, where both steps are performed jointly and is conditioned with the sentence representation.

6.1.3 Naive Surface Realization

We also use a naive approach which does not perform micro-planning and tries to decodes on
word level, not taking into consideration the document structure. Therefore, the model learns
how to generate arbitrarily long sentences by learning how to map from the topic distribution
into words. This approach main advantage is its simplicity, approaching the realization in a
naive way by simply optimizing the sequence of words with respect to a context vector. How-
ever, this approach lacks the ability to model the document structure and the inter-sentence
relations, which is relevant for generating better utterances. Furthermore, this approach tries
to learn arbitrarily long sequences, which can lead to worse results, as there are practical limi-
tations in the statistical learning approach. The surface realizer module for the naive approach
is depicted in Figure 6.4.

6.2 Experimental Setup

Our micro-planner is responsible for determining the structure of the response explicitly, while
modelling fine-grained relationships by learning a mapping from the document topic distribu-
tion into its sentences topic distributions. Surface realization determines linguistic content from
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Figure 6.3: Word realization. Realize the non linguistic content with linguistic content.

non-linguistic content, as such we propose an approach which relies on deep learning, with em-
phasis on recurrent neural networks, to decode the representation of the sentence planner into
words. Considering the encoder-decoder (Cho et al. 2014) architecture, this is the decoding
part.

We approach the problem as a sequence-to-sequence problem, namely a one-to-many and
a one-to-many-to-many problem – naive realization and micro content and realization, respec-
tively. We address the problem with statistical optimization, namely deep learning, due to
RNNs having the ability to model arbitrarily long sequences. Furthermore, RNNs also provide
a method to increase the flexibility and, arguably, naturalness of the generated utterance as it
avoids repetitiveness. The decoders considered in this work are similar to the one proposed
by Bahdanau et al. (2014), where the embedding of target word e(yt) at step t is a peek of the
output, and the additional weight matrices C,Cr,z compute the context vector ct at each step:

zt = σ(Wz · e(yt) + Uz · ht−1 + Cz · ct + bz) (6.1)

rt = σ(Wr · e(yt) + Ur · ht−1 + Cr · ct + br) (6.2)

h̃t = tanh(W · e(yt) + U · (rt ∗ ht−1) + C · ct + b) (6.3)

ht = (1− zt) ∗ ht−1 + zt ∗ h̃t (6.4)

Furthermore, the hierarchical naive approach is similar to the one used by Li et al. (2015),
with one decoder decoding on document level (sentences) and another decoder conditioned
by the first one decoding on sentence level (words), using a “static” attention mechanism (Yan
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Figure 6.4: Surface Realizer.

2016). Therefore, this decoder operates on inter-sentence and intra-sentence level, preserv-
ing the document (response) structure and the sentence structure of each sentence. The micro
planning and realization divide this approach into two different steps, the first models a one-
to-many sequence, unrolling a topic distribution into its composing topic distributions, while
the second is for each topic distribution realize a sequence of words. Figure 6.5 depicts the
hierarchical decoder.

Figure 6.5: Hierarchical decoder. Extracted from Li, Luong, and Jurafsky (2015).

Both the naiver realization and micro planning and realization models were develop us-
ing Theano (Theano Development Team 2016) and the framework developed during the im-
plementation depicted in the appendix A, where more details about the implementation are
provided. Both use the same corpus and the same normalization (the same normalization used
for the word embeddings). In addition, both models run on a GeForce GTX TITAN X (Nvidia
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Corporation 2015).

Before addressing the decoders and their setup, there are some concepts that must be de-
scribed, which we implemented and used: minibatching update which is the method used for
training the network 6.2.1, zero padding for different size training examples 6.2.2, masking
6.2.3, bucketing 6.2.4, and early stopping 6.2.5.

6.2.1 Minibatch Update

ANNs are usually trained using backpropagation and there are three mainstream methods for
training the network: on-line update, batch update, and minibatch update. On-line update
consists of applying a forward pass for a single training example, calculate the error with the
cost function (loss) and backpropagate by updating the parameters of the network (using an
optimization algorithm, which we will assume to be Stochastic Gradient Descent (SGD) for the
sake of argument). Thus, this method is very slow as the network has to converge by looking
one example at each forward pass, i.e., by feeding one example in each iteration the network’s
error can be very distinct with respect to the last one, as the examples can be very distinct, and
this will imply that the SGD will take longer to converge, note the step may be in the opposite
direction of the previous one.

To address the variations in the network’s error, the batch update technique applies all the
training examples in each forward pass (which is in fact an epoch), calculating the error and
updating all the parameters taking into consideration all the examples at once, trying to con-
verge faster. However, batch update suffers from trying to learn everything from everything,
i.e., as the network is fed all the training examples, it will try to learn the mapping at once,
which may cause the network to converge to a local minima.

Minibatch update is a combination of the previous two methods and consists of instead of
assuming one or all, the network is fed minibatches, which are fixed size batches of examples.
Therefore, the network will look at a percentage of the examples at each forward pass and
backpropagate the error considering those examples. A note, if the minibatch size is 1 then the
behaviour is the same as on-line update and if the minibatch size is the size of the training set
then it behaves as batch update.

6.2.2 Zero Padding

The problem we are considering is a sequence-to-sequence and, as such, we have to perform
a zero padding so that all the sequences have the same size when fed to the network. This
guarantees that the recurrent network works as expected.
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6.2.3 Masking

Using padding implies that there are a lot of steps which are irrelevant for the sequence, the
ones represented by zeros. This implies that the network will look at these steps and just
perform a reset instead of continuing to learn, with the additional problem of computing the
cost. To address this, the masking technique consists of building a matrix that determines
which steps should be taken into account when computing the recurrent steps and the cost.

6.2.4 Bucketing

Although zero padding is crucial for sequence to sequence tasks, there is a clear disadvan-
tage: padding without any context will lead to shorter size samples being represented almost
by zeros, as the longer size samples will force the size of the padding. Thus, in order to ad-
dress this limitation, the bucketing technique divides the samples by their size to avoid too
much padding and thus the padding is performed with respect to the biggest size of the bucket
instead of the whole collection.

6.2.5 Early Stopping

In addition to all the machine learning techniques already discussed, we also implement and
use early stopping, this is, we use the validation set after each epoch and if the network is not
improving after n iterations then we stop training as the network already converged, to a local
minima at least.

6.2.6 Training Details

The naive surface realizer is trained using a peek of the target word, therefore, not only, the
decoder is trained conditioned by the context vector (the topic distribution), but also, it is con-
ditioned by the word which should be predicted. This is accomplished by training the network
with a peek of the output.

The hierarchical naive approach is trained using a peek of the target sentence and target
word, both in different levels. The first level decodes on document (sentence) level and de-
cides what information should the sentences have, while the second level decodes on sentence
(words) level and decides which words should constitute each sentence. Finally, the content
selection and realization are trained separately, the first one is trained as a demultiplexer of
topic distributions in a one-to-many problem, while the second, is trained using sequences of
topic distributions into sequences of words, in a sequence-to-sequence approach.

Furthermore the experiments conducted for the naive realization approach consist of a
one layer decoder with 1024 units and the word representations the word embeddings previ-
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ously discussed. While the hyper parameters defined for the hierarchical decoders and micro-
planning and realization were 512 units for all hidden layers. All the decoders are trained
using an adaptive optimizer, namely ADAM. Briefly, ADAM is an extension of the SGD and
RMSProp and uses a running average of both algorithms along with the second moments of
the gradient.

During the realization of these experiments we faced a constraint regarding the available
GPU memory, as when performing softmax over the vocabulary it exceed the available mem-
ory (a distribution for each time step for each training example and the vocabulary is in the
million of words). In addition, loading all the dataset into the GPU memory also proved to
be insuperable, both problems are even more evident in the hierarchical decoder. Therefore
to address these limitations, in all experiments we have a sparse representation in the Central
Processing Unit (CPU) memory and only transfer to the GPU the minibatch for each minibatch
of the dataset. Moreover, to overcome the memory limitation, we don’t perform a softmax at
the end of the network, predicting only the word embeddings or topic distributions. Finally,
we perform greedy best first search until an end-of-sentence or end-of-document is found and
we define the probability of a word as the multinomial distribution of the cosine similarity to
the words in the word embeddings matrix.

More details of all the models are further described in appendix A.

6.3 Experimental Results and Discussion

Evaluating a natural language generator is a hard task, as different utterances can encode the
same meaning. In fact, the community is often divided when the subject is evaluating a gen-
eration system, as the existent objective measures only take into consideration the frequency
of ngrams in the generated utterance with respect to the expected utterance, the same applies
for fields such as machine translation. Thus, subjective measures where independent judges
classify the system’s response are one of the methods to evaluate the system’s performance, for
instance considering the fluency and naturalness of the generated utterance.

Due to the hard nature of evaluation and, mostly, because the results presented here are still
preliminary results, we can not perform an objective analysis, similar to the one for the sentence
planning (section 5), nor a subjective analysis of the quality of the generation. However, we
depict a sample of our results in Table 6.1.

From the previous Table, we can observe that both the naive surface realization and hier-
archical naive approach produce words without a coherent structure and their semantic inter-
pretation is very hard to interpret, as some of the words are part of the domain-specific corpus,
while others are very far from what we were expecting.
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solar flares are planet-sized eruptions of boiling gas,
prominences that break free of the sun.
they been seen from Earth, but not in such detail
and quantity.

Table 6.1: Surface Realization Preliminar Results.
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6.3.1 Discussion

The results depicted here are preliminar and require further study to conclude whether the
approach is feasible. The results of the Micro-planning and realization as two steps are not
depicted here, as the micro-planner could not map the topic distribution to a sequence of topic
distributions. Furthermore, the behaviour of the networks was predicting the same distribu-
tions for different initial distributions. Thus, the realization using the micro-planner results
was not approached.

All the experiments performed suffer from the same defect, which could be improved: the
number of layers in the architecture is not sufficient to model from the domain-specific content
into the word generic representation. This requires further study by increasing the number of
layers.

While conducting the experiments, we faced an insuperable obstacle: the GPU memory
limitations. We would perform softmax, or an approximation, at the end of the network and use
as loss function the categorical cross entropy. Therefore, we used an approximation by using
as loss function the mean squared error for the flat model and hierarchical model, predicting
directly the embeddings, and the cosine distance (and mean squared error) for the content
planning.

Finally, dividing the realization into two steps, where the first predicts content words and
the second adds functional words, is a study to be conducted.

6.4 Summary

We described our approach to micro-planning and surface realization using deep learning,
namely RNNs. This way, we exploit the ability to model arbitrarily large sequences, which are
reflected on determining the structure of the answer (document level, inter-sentence relations,
and sentence level, intra-sentence relations). To achieve this, we use a naive approach, which
operates on intra-sentence level, and a micro content and surface realization approach, which
operates on two levels, document level, and sentence level. Moreover we formulate the naive
approach as a decoder with a peek of the target and the micro content and realization as a
joint optimization (hierarchical decoding) and a decomposing into two separate tasks, micro
planning to plan the structure of the realization and a realizer to determine the words, where
the first part is responsible for determining which sentences best reflect the answer and how
many (micro planning), while the second decoder is responsible for determining which words
fit best in each sentence (realization).

Evaluating a generation system is hard due to the subjective nature of the utterance gen-
erated. Furthermore, we depict our preliminary results, which did yield good results. In fact,
our approaches did not exploit the full deep architecture of neural networks and the results
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were not the ones we expected. Thus, the approach requires further study to understand if this
approach is feasible.
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7Conclusions and Future

Work

Approaching the generation problem as open domain is a hard task, in fact, its not solved
yet. There are different approaches for the generation problem, namely template-based, con-
ventional pipeline, and statistical approach, however the open domain problem has only been
addressed recently by Li and Jurafsky (2016). Thus, approaching the problem in the context
of open domain implies a number of hard tasks. The statistical approaches to the genera-
tion problem are the ones, arguably, closer to an open domain interaction, as they allow to
reduce hand-crafted rules for the domain dependent parts. With this in mind, the statistical
approaches, usually, optimize one, or both, components of the conventional approach. Thus,
we approached the generation problem addressing both components as different tasks.

Approaching the problem as end-to-end problem is possible, as Li and Jurafsky (2016)
showed. However, we build a generation system in the context of a narrator and use subtitles
as our domain dependent corpus. This corpus is limited in size, therefore we want to minimize
the error an end-to-end approach would yield and divide into different components.

We explored different corpus constructions to understand the nature of the subtitles corpus
and evaluate if this corpus is suitable for the domain-dependent part that even an open domain
system must comprise. We perform this evaluation by building different LDA topic models,
which are build in an unsupervised way. In this step we faced constraints regarding the quality
of the subtitles, as we had to perform specific normalization for the subtitles and build our
own corpus from the initial subtitles. The corpus construction is a very important part of the
generation process, especially using data-driven methods, as it conditions all the process.

Furthermore, in order to consider open domain generation, we identified the following
challenges, (1) how to tackle open domain in the NLG module, (2) how do neural networks
(deep feedforward and recurrent) can be combined with topic modeling to address open do-
main.

The first challenge is described in chapter 3 where we provide the state of the art and
discuss which alternatives are suitable for an open domain generation. However, open domain
generation is still an unsolved problem and we study methods to condition the generation with
domain-specific content. Thus, in chapters 5 and 6 we describe our approach to the generation
process, addressing the second challenge. Moreover, we address the generation problem by
regarding each component as a statistical problem, namely the sentence planner learns how to
refine a question generic space into a domain-specific space, and the micro-planner and surface



80 CHAPTER 7. CONCLUSIONS AND FUTURE WORK

realizer learn how to map back to the generic space conditioned on the domain-specific content.

Our sentence planner models the communication objective by refining a generic (synthe-
sized) question space into a topic space, which is representative of a domain. Thus, the planner
determines the content for the response by determining which topics should be realized. The
mapping between the two spaces is accomplished using DNN, which can learn a mapping be-
tween different spaces. This could lead to, potently, a flexible and modular planning that can be
learn via DNN. We showed that the planner can learn how to lower the dimensionality of the
word space, by learning the mapping from a domain independent space (word embeddings)
with a large vocabulary into a lower denser space (topic inference) with a small vocabulary.
Moreover, comparing unsupervised models is a hard task, even more when comparing a su-
pervised model that learns the unsupervised model. The evaluation of a topic model is not
easy, as the interpretation, usually, is taken directly from the quality of the estimated bag of
words. We compare how the DNN compare with the LDA inference using the cosine similarity
and show that the results suggest that mapping from the generic embedding space into the
inference space is possible and does not yield worse results.

We address the surface realization as performing the inverse operation from the sentence
planner, i.e., the realization maps from the domain space and conditions the generation in the
domain independent space. To achieve this, we use sequence to sequence models by exploiting
the power of RNN to model arbitrarily long sequences. Formulating the realization as a RNN
allows to exploit the temporal relations of language However, our results are far from the ones
we expected. We approached the surface realization using a naive realization approach and
two micro-planning and realization approaches, a naive jointly optimization and a divided
approach. All the approaches require more study as the results are all preliminar.

Addressing the surface realization module with deep learning provides a flexible and pow-
erful method to model sequence learning. However, learning a very large vocabulary is a very
hard task, as there are memory and temporal limitations. The memory limits lead us to a sub-
optimal approach, where we are not optimizing the softmax probability, rather we predict the
embeddings directly. This limitation leads to more noise being added to the model.

Finally, our main contribution is both the corpus construction, as well as addressing the
sentence planning as a mapping from a generic space into a domain space, through a domain-
independent method. Moreover, our approach to the realization is also a contribution from the
abstract perspective, even if in practice the results are far from the ones expected.

7.1 Future Work

Our future work will address using Gaussian LDA (Das, Zaheer, and Dyer ) for the sentence
planning, as the mapping from word embeddings to topic distributions is natural for the
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method. Another approach is formulating the sentence planning as a RNN with real ques-
tions instead of synthesized ones. Furthermore we will approach the problem as an end-to-end
task and perform a comparison between the two systems. We will also study how to trans-
fer the domain learnt to another, as currently method is domain independent from a plugable
perspective.

Finally, we will also resort to machine learning techniques such as the soft attention mecha-
nism and scheduled sampling to improve the surface realization. Moreover, we will also study
dividing the realization problem into one more step, where the first step predicts content words
and the second adds functions words to the content ones.
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Wen, T., M. Gašić, N. Mrksic, P. Su, D. Vandyke, and S. J. Young (2015). Semanti-
cally conditioned lstm-based natural language generation for spoken dialogue systems.
In Proceedings of the 2015 Conference on Empirical Methods in Natural Language Processing,
EMNLP 2015, Lisbon, Portugal, September 17-21, 2015, pp. 1711–1721.

Williams, J. D. and S. J. Young (2007). Partially observable markov decision processes
for spoken dialog systems. Computer Speech & Language 21(2), 393–422.

Xu, W., B. Xu, T. Huang, and H. Xia (2002). Bridging the gap between dialogue
management and dialogue models. In Proceedings of the 3rd SIGdial workshop on Discourse
and dialogue-Volume 2, pp. 201–210. Association for Computational Linguistics.

Yan, R. (2016). I, poet: Automatic poetry composition through recurrent neural net-
works with iterative polishing schema. In Proceedings of the Twenty-Fifth International Joint
Conference on Artificial Intelligence, IJCAI’16, pp. 2238–2244. AAAI Press.

Young, S. J. (1999). Probabilistic methods in spoken dialogue systems. Philosophical
Transactions of the Royal Society (Series A 358, 1389–1402.
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ADeep Learning

In this appendix we describe the details regarding the Theano implementation of both flat and
hierarchical decoders, as well as the L2F Deep Learning Framework.

A.1 Flat and Micro Planning Decoder

Both decoders were implemented using Theano and the developed framework during the re-
alization of this work. This framework was developed with Miguel Varela Ramos and will be
further described in section A.2. We developed different layers and models to address both sen-
tence planning and surface realization with deep learning. Therefore, we developed a flat layer
where the input is a batch of topic distributions and the target is the word embeddings; an hier-
archical layer where the first part maps from a topic latent space into the embeddings sentence
embeddings and second part maps from sentence representation into the word embeddings
(an unroll of the space of the sentence); and a layer which decodes from one topic distribution
to a sequence of topic distributions, as well as a layer witch decodes from a sequence of topic
sequences into a sequence of word embeddings.

For each one of the problems, we also implement a different model, as the computational
graph differ very much one from another. During the realization of this work, we faced an in-
superable obstacle: we want to decode from the domain dependent vocabulary into the generic
vocabulary and as such we tried to perform a softmax over the generic vocabulary (millions of
words). This proved to be insuperable due to the memory limitations of the GPU, as well as the
tractability of performing a softmax over a large vocabulary. Thus we use an approximation
during train and test, we predict the embeddings directly at train time and at test we define the
probability of the word as the arg max of a multinomial distribution of the cosine distance to
the embedding matrix. Thus, we implement a greedy best first sampler for all the models.

Therefore we implemented the following layers:

• FlatDecoder

• HierachicalDecoder

• Mix2MixesDecoder

• Mixes2WordsDecoder
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and the following models:

• FlatModel

• HierarchicalModel

• Mix2MixesModel

• Mixes2WordsModel

Furthermore, we also faced another constraint during this work related to the available
memory of the GPU: how many samples can be in the GPU’s memory. Thus, to address this
limitation we only transfer from the CPU memory to the GPU the minibatch that is being con-
sidered. We achieve this through a data iterator, which has a sparse representation in the CPU
and for each of the minibatches produces the full representation to transfer to the GPU. In ad-
dition, we also implement bucketing, we sort the sentences by their size and the group them in
batches to minimize the zero padding.

A.2 L2F Deep Learning Framework

There are numerous deep learning frameworks, such as Chollet (2015), van Merriënboer et al.
(2015), among others, which provide most of the layers, optimizers, and cost functions required
to train a DNN, whether recursive or feedforward. However, the flexibility we encountered in
some of these frameworks did not meet our requirements, as the development of new layers,
for instance, is constrained by how these frameworks are built. Thus, we developed a small
framework for personal usage, which is still being developed.

The framework was developed over the well known mathematical framework Theano
(Theano Development Team 2016), which provided all the background for the sound math-
ematical operations required by the models and layers. There are alternatives to Theano that
operate on a similar level, namely Tensorflow (Abadi et al. 2015), but we choose to develop
over Theano due to the flexibility it provided without any specific architecture for the layers.
Moreover, developing using directly Theano provides a greater flexibility than the other frame-
works, even if those frameworks are built using this mathematical framework. Nevertheless,
we borrowed some of the features those frameworks already provide, for instance the optimiz-
ers, and we provide the reference and credit from where they were developed.

The framework is divided into four modules: layers, models, optimization, and utils. The first
module, layers, contains

The layers module contains the template for all layers, the GenericLayer, that provides an
opaque method for saving and loading a layer, and consequently a model, parameters. More-
over, in this module we also provide relevant layers used in deep learning and is further dis-
cussed in A.2.1. The models module contains all the developed models for this framework
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that provide a easy to use interface to train the models. The optimization module provides ev-
erything related to model optimization, such as optimizer algorithms (e.g. ADAM, RMSProp,
SGD), and regularization techniques (dropout). Finally, the utils module provides utilities for
different contexts, for instance decay functions for a curriculum learning train, data handlers
template, among others. In addition, the framework also provides the activation functions that
Theano provides, as well as the variables initialization.

A.2.1 Layers

A layer is a representation of a ANN hidden layer, namely a python class representation. There
are numerous possible layers, feedforward, convolutional, recurrent, thus we only provide a
few of those layers as they are the ones that met our requirements during the development of
the framework, namely for RNNs and sequence to sequence. A note, although we did not use
attention models and attention decoders, they were both developed. The implemented layers
are:

• Attention mechanism

• Fully Connected Layer (Dense)

• Time Distributed Fully Connected Layer (Time Distributed Dense)

• GRU

• Bidirectional GRU

• LSTM

• Bidirectional LSTM

• GRU Decoder

• LSTM Decoder

• GRU Attention Decoder

As already described, this module contains the generic representation for the existent and
future layers, named GenericLayer, which provides the super class abstraction for all layers. In
addition, this class provides a way to load and save the layer parameters from or to a file.

An example of one of the simplest layers is the fully connected layer and is provided next
– we provide the code.

c l a s s Dense ( Layer ) :
”””

Th i s l a y e r i s r e s p o n s i b l e f o r p e r f o r m i n g a l i n e a r t r a n s f o r m a t i o n from one d imens i on t o
a n o t h e r one .

”””

def i n i t ( s e l f , i n p u t s i z e , output s ize , a c t i v a t i o n = l i n e a r , b i a s=True , name= ’ dense ’ ,
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∗∗kwargs ) :
”””
I n i t method f o r Dense l a y e r .
: param i n p u t s i z e :
: param o u t p u t s i z e :
: param a c t i v a t i o n :
: param b i a s :
: param name :
: param kwargs :
”””
s e l f . i n p u t s i z e = i n p u t s i z e
s e l f . o u t p u t s i z e = o u t p u t s i z e
s e l f . a c t i v a t i o n = a c t i v a t i o n
s e l f . name = name
s e l f . b i a s = b i a s

s e l f .W = random variable ( ( s e l f . i n p u t s i z e , s e l f . o u t p u t s i z e ) ,
name= ’ {} W ’ . format (name ) )

params = [ s e l f .W]

i f s e l f . b i a s :
s e l f . b = theano zeros ( ( s e l f . output s ize , ) ,

name= ’ {} b ’ . format (name ) )
params += [ s e l f . b ]

super ( Dense , s e l f ) . i n i t ( params )

def forward ( s e l f , x , mask=None , mask out=True , ∗∗kwargs ) :
”””
Forward method f o r Dense .

: param x : 2D Matrix , ( b a t c h s i z e , i n p u t s i z e )
: param mask : Matrix with b i n a r y mask f o r padding ,
( b a t c h s i z e , n r f r a m e s ) , no t used .
: param mask out : B o o l e a n v a l u e t o i n d i c a t e whe the r t o
p e r f o r m masking t o t h e h idde n s t a t e , no t used .
: r e t u r n : h idd en s t a t e wi th t h e l i n e a r t r a n s f o r m a t i o n
”””
z = T . dot ( x , s e l f .W) + s e l f . b
return s e l f . a c t i v a t i o n ( z )

All layers must have two essential and mandatory components: a constructor, a forward
method. Moreover, other layers can provide a predict method to differentiate the forward and
predict operations.

In the previous example, we initialize all layer’s parameters as shared variables, this is, the
variables are loaded to the GPU (if it is available) and remain in the GPU memory. In addition,
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the constructor should define all the weight and bias matrix of the layers and call the super
constructor with those parameters.

The forward method defines the layer’s behaviour during training, and in some cases dur-
ing test. In the previous case, the layer’s behaviour is performing the transformation into the
hidden space followed by a non-linearity

y = activation(W · x+ b) (A.1)

Furthermore, the predict method should be present when the behaviour at test time is dif-
ferent from the one at training time.

An important note, n the current version, the framework does not support training a single
a layer just as a layer, to train even a single layer the models should be used.

A.2.2 Models

A model is the abstract representation for the behaviour one or more layers define, i.e., the
model allows to develop DNN with specified layers, for instance a stacking multiple layers
where hidden states are propagated from one layer to another as input. The models developed
are the following:

• DNN (feedforward, recurrent and recurrent bidirectional)

• Sequence to Sequence

• Attention Sequence to Sequence

Each model should combine several implemented layers, as one chooses, and must be, at
least, a subclass of GenericLayer. Thus, each model should provide a forward and a predict
method. We provide a generic model that already provides minibatch update, which behaves
as online update for batches of size 1 and batch update when the batch size is the size of the
training set, and that already provides the computational graph for a simple prediction model.
Thus this model can be extended to define the variables of the graph and use as-is. Next we
provided the code for the deep network which is a generic model, thus the computational
graph and all that is required to build one is abstracted:

c l a s s StackedLayers ( Model ) :
”””
Th i s c l a s s i s t h e r e p r e s e n t a t i o n o f a de ep network .
Th i s way i s e a s y t o s t a c k LSTM, GRU, or B i D i r e c t i o n a l l a y e r s .
The l a s t s t e p o f t h i s model i s t o p e r f o r m a l i n e a r t r a n s f o r m a t i o n
from t h e l a s t h i dde n s i z e d imens i on t o t h e o u t pu t
d imens i on .
”””
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def i n i t ( s e l f , i n p u t s i z e , h s i z e s , output s ize , l a y e r =LSTM, do softmax=Fa lse ) :
”””
I n i t method o f t h e S t a c k e d L a y e r s model .

: param i n p u t s i z e :
: param h s i z e s : l i s t , s i z e s . Should be o f t h e
form [ i n p u t s i z e , h i d d e n s i z e , . . . , n f e a t u r e s ] .
: param l a y e r : c l a s s , l a y e r t o use
”””

a s s e r t i s i n s t a n c e ( h s i z e s , l i s t ) , ” Please provide a l i s t with the hidden s i z e s ”
a s s e r t len ( h s i z e s ) > 0 , ”Empty hidden s i z e s l i s t . Aborting . ”

s e l f . i n p u t s i z e = i n p u t s i z e
s e l f . o u t p u t s i z e = o u t p u t s i z e
s e l f . h s i z e s = h s i z e s
# Weight I n i t i a l i z a t i o n
s e l f . s tack = [ l a y e r ( s e l f . i n p u t s i z e , h s i z e s [ 0 ] , name= ’ {}0 ’ . format ( l a y e r . name ) ) ]

i f i s i n s t a n c e ( s e l f . s ta ck [ 0 ] , B i D i r e c t i o n a l L a y e r ) :
s e l f . i s b i d i r = True

i f len ( h s i z e s ) > 1 :
s e l f . s tack = s e l f . s tack + [ l a y e r ( h s i z e s [ i ] , s ize ,

name= ’ {}{} ’ . format ( l a y e r . name , i +1 ) )
for i , s i z e in enumerate ( h s i z e s [ 1 : ] ) ]

s e l f . t dense = TimeDistributedDense ( o u t p u t s i z e = s e l f . output s ize ,
i n p u t s i z e = h s i z e s [−1] , name= ’ t dense ’ )

# Model p a r a m e t e r s
layers params = [ l a y e r . params for l a y e r in s e l f . s tack ]
layers params = [ params for s u b l i s t in layers params for params in s u b l i s t ]
params = layers params + s e l f . t dense . params
super ( StackedLayers , s e l f ) . i n i t ( params , do softmax )

def forward ( s e l f , x , y=None , eps i lon=None , mx=None , my=None , dropout rate = 0 . 1 ,
mask out=True , t r a i n p h a s e =True ,
l e a r n i n g r a t e =0 .001 , ∗∗kwargs ) :

# Encode r s Forward Pass
h = s e l f . s tack [ 0 ] . forward ( x , mask=mx, mask out=mask out )

i f t r a i n p h a s e :
i f s e l f . i s b i d i r :

h = ( dropout ( h [ 0 ] , dropout rate ) , dropout ( h [ 1 ] , dropout rate ) )
e lse :

h = dropout ( h , dropout rate )
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i f s e l f . i s b i d i r :
h = h [ 0 ] + h [ 1 ]

for l a y e r in s e l f . s tack [ 1 : ] :
h = l a y e r . forward ( h , mask=mx, mask out=mask out )

i f t r a i n p h a s e :
i f s e l f . i s b i d i r :

h = ( dropout ( h [ 0 ] , dropout rate ) , dropout ( h [ 1 ] , dropout rate ) )
e lse :

h = dropout ( h , dropout rate )

i f s e l f . i s b i d i r :
h = h [ 0 ] + h [ 1 ]

y hat = s e l f . t dense . forward ( h )

i f s e l f . do softmax :
y hat = softmax ( y hat )

return y hat

Furthermore, all models require a computational graph to be compiled with Theano vari-
ables and the parameters of each layer, next we calculate the loss function (which is also an
argument of the train method) and apply an optimizer, for instance ADAM. With these steps,
we compile two Theano functions, one for training and one for validation/testing, that allow to
use the numerical values over the computational graph. In addition, we also allow techniques,
such as masking and masked costs, to be performed during the compilation of the graph. An
overview of the compilation process is depicted next, note that we omit other methods includ-
ing the minibatch update which is straightfoward:

c l a s s Model ( GenericLayer ) :

def i n i t ( s e l f , params , do softmax=Fa lse ) :
super ( Model , s e l f ) . i n i t ( params )
s e l f . debug = os . environ . get ( Constant . DEBUG STR) i s not None

def compile ( s e l f , mask=False , l e a r n i n g r a t e =0 .01 , momentum= 0 . 9 , dropout rate = 0 . 1 ,
mask out=True , l o s s f u n c t i o n =mean squared error , opt imizer=rmsprop ,
∗∗kwargs ) :

s y m b o l i c v a r i a b l e s = s e l f . s y m b o l i c v a r i a b l e s (∗∗kwargs )

s e l f . sym vars = s y m b o l i c v a r i a b l e s

a s s e r t ”y” in symbol i c var iab les , ” Symbolic y not defined . Aborting ”
a s s e r t ”x” in symbol i c var iab les , ” Symbolic x not defined . Aborting ”
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y hat , y h a t v a l = s e l f . compile ( symbol i c var iab les , mask=mask , mask out=mask out ,
l e a r n i n g r a t e = l e a r n i n g r a t e ,
momentum=momentum, dropout rate=dropout rate , ∗∗kwargs )

# ( b a t c h s i z e , n r f r a m e s o u t , ou tput d im ) ∗ mask out . d i m s h u f f l e ( 0 , 1 , ’ x ’ )

y = s y m b o l i c v a r i a b l e s [ ”y” ]
my = s y m b o l i c v a r i a b l e s [ ”mask y” ]

c o s t = l o s s f u n c t i o n ( y , y hat )
c o s t v a l = l o s s f u n c t i o n ( y , y h a t v a l )

i f mask :
c o s t = masked cost ( cost , my)
c o s t v a l = masked cost ( c o s t v a l , my)

e lse :
c o s t = masked cost ( c o s t )
c o s t v a l = masked cost ( c o s t v a l )

i f s e l f . debug :
import theano . p r i n t i n g
theano . p r i n t i n g . pydotprint ( cost , o u t f i l e =”debug . png” , var with name simple=True )

grads = T . grad ( cost , s e l f . params )

updates = optimizer ( grads , s e l f . params , l e a r n i n g r a t e = l e a r n i n g r a t e )

i f s e l f . debug :
print ( ” [ + ] Creat ing t r a i n and v a l i d a t i o n f u n c t i o n s ” )

s e l f . f u n c t i o n s ( cost , c o s t v a l , updates , symbol i c var iab les , mask=mask , ∗∗kwargs )

return s e l f . t r a i n f u n c t i o n , s e l f . v a l i d a t i o n f u n c t i o n

def forward ( s e l f , x , y=None , eps i lon=None , mx=None , my=None , dropout rate = 0 . 1 ,
mask out=True , t r a i n p h a s e =True ,
l e a r n i n g r a t e =0 .001 , ∗∗kwargs ) :

”””
I n t e r f a c e d e f i n i t i o n f o r Model ’ s f o r w a r d . Every model MUST o v e r r i d e t h i s method .

: param x :
: param y :
: param e p s i l o n :
: param mx :
: param my :
: param d r o p o u t r a t e :
: param mask out :
: param t r a i n p h a s e :
: param l e a r n i n g r a t e :
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: param kwargs :
: r e t u r n :
”””
pass

def compile ( s e l f , symbol i c var iab les , mask out=True , mask=False ,
l e a r n i n g r a t e =0 .01 , momentum= 0 . 9 ,
dropout rate = 0 . 1 , ∗∗kwargs ) :

”””
Compi le f u n c t i o n by d e f a u l t .

: param s y m b o l i c v a r i a b l e s :
: param mask out :
: param mask :
: param w i t h i n f o :
: param l e a r n i n g r a t e :
: param momentum :
: param d r o p o u t r a t e :
: param kwargs :
: r e t u r n :
”””
w it h in fo = kwargs [ ” wi th i n f o ” ] i f kwargs . get ( ” wi th in f o ” ) e lse None

x = s y m b o l i c v a r i a b l e s [ ”x” ]
y = s y m b o l i c v a r i a b l e s [ ”y” ]
mx = s y m b o l i c v a r i a b l e s [ ”mask x” ] i f mask e lse None
my = s y m b o l i c v a r i a b l e s [ ”mask y” ] i f mask e lse None
n s te ps = s y m b o l i c v a r i a b l e s [ ” n s t ep s ” ] i f s y m b o l i c v a r i a b l e s . get ( ” n s te ps ” ) e lse None
tmp steps = None
i f kwargs . get ( ” n s t ep s ” ) i s not None and n s t ep s i s not None :

tmp steps = kwargs . get ( ” n s te ps ” )
del kwargs [ ” n s t ep s ” ]

i f mask :
y hat = s e l f . forward ( x , n s te ps=n steps , mx=mx, my=my,

dropout rate=dropout rate , mask out=mask out ,
t r a i n p h a s e =True ,
l e a r n i n g r a t e = l e a r n i n g r a t e , momentum=momentum, ∗∗kwargs ) \

i f n s te ps i s not None \
e lse s e l f . forward ( x , y=y , mx=mx, my=my, dropout rate=dropout rate ,

mask out=mask out , t r a i n p h a s e =True ,
l e a r n i n g r a t e = l e a r n i n g r a t e , momentum=momentum, ∗∗kwargs )

y h a t v a l = s e l f . forward ( x , n s t ep s=n steps , t r a i n p h a s e =False ,
l e a r n i n g r a t e = l e a r n i n g r a t e ,
momentum=momentum, ∗∗kwargs ) i f w it h i n f o \

e lse s e l f . forward ( x , y=y , t r a i n p h a s e =False , l e a r n i n g r a t e = l e a r n i n g r a t e ,
momentum=momentum, ∗∗kwargs )



104 APPENDIX A. DEEP LEARNING

e lse :
i f s e l f . debug :

print ( ” [ + ] Warning : Masking not provided . ” )

y hat = s e l f . forward ( x , n s te ps=n steps , dropout rate=dropout rate ,
mask out=mask out , t r a i n p h a s e =True ,
l e a r n i n g r a t e = l e a r n i n g r a t e , momentum=momentum, ∗∗kwargs ) \

i f n s te ps i s not None \
e lse s e l f . forward ( x , y=y , dropout rate=dropout rate , mask out=mask out , l

e a r n i n g r a t e = l e a r n i n g r a t e ,
momentum=momentum, t r a i n p h a s e =True )

y h a t v a l = s e l f . forward ( x , n s t ep s=n steps , t r a i n p h a s e =False ,
l e a r n i n g r a t e = l e a r n i n g r a t e ,
momentum=momentum) \

i f w it h i n f o e lse s e l f . forward ( x , y=y , t r a i n p h a s e =False ,
l e a r n i n g r a t e = l e a r n i n g r a t e ,
momentum=momentum, ∗∗kwargs )

i f kwargs . get ( ” n s t ep s ” ) i s not None and n s t ep s i s not None :
kwargs [ ” n s te ps ” ] = tmp steps

return y hat , y h a t v a l

def f u n c t i o n s ( s e l f , cost , c o s t v a l , updates , symbol i c var iab les , mask=False , ∗∗kwargs ) :
”””
I n t e r n a l f u n c t i o n s d e f i n i t i o n .
By d e f a u l t e a c h model i s p r o v i d e d with f u n c t i o n s with number o f s t e p s p r o v i d e d .

: param c o s t : Cost o f t r a i n .
: param c o s t v a l : Cost o f v a l i d a t i o n .
: param u p d a t e s : Opt imiz e r u p d a t e s .
: param x : Tensor3 s y m b o l i c .
: param y : Tensor3 s y m b o l i c .
: param n s t e p s : I n t e g e r S c a l a r s y m b o l i c .
: param mx : Matrix s y m b o l i c .
: param my : Matrix s y m b o l i c .
: param mask : B o o l e a n . Mask .
: param w i t h i n f o : B o o l e a n . I f wi th n s t e p s
: param kwargs : Remaining a r g s .
: r e t u r n :
”””

x = s y m b o l i c v a r i a b l e s [ ”x” ]
y = s y m b o l i c v a r i a b l e s [ ”y” ]
mx = s y m b o l i c v a r i a b l e s [ ”mask x” ] i f mask e lse None
my = s y m b o l i c v a r i a b l e s [ ”mask y” ] i f mask e lse None
n s te ps = s y m b o l i c v a r i a b l e s [ ” n s t ep s ” ] i f s y m b o l i c v a r i a b l e s . get ( ” n s te ps ” ) e lse None
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a s s e r t y i s not None or n s t ep s i s not None , ”Nor y nor n s t ep s provided . Aborting . ”
i f mask :

t r a i n f u n c t i o n = theano . funct ion ( inputs =[x , n steps , y , mx, my] ,
outputs=cost , updates=updates ) \

i f n s te ps i s not None e lse theano . funct ion ( inputs =[x , y , mx, my] ,
utputs=cost , updates=updates )

v a l i d a t i o n f u n c t i o n = theano . funct ion ( inputs =[x , n steps , y , mx, my] ,
utputs= c o s t v a l ) \

i f n s te ps i s not None e lse theano . funct ion ( inputs =[x , y , mx, my] ,
outputs= c o s t v a l ,
on unused input= ’ ignore ’ )

e lse :
t r a i n f u n c t i o n = theano . funct ion ( inputs =[x , n steps , y ] ,

outputs=cost , updates=updates ) \
i f n s te ps i s not None e lse theano . funct ion ( inputs =[x , y ] ,

outputs=cost , updates=updates )

v a l i d a t i o n f u n c t i o n = theano . funct ion ( inputs =[x , n steps , y ] , outputs= c o s t v a l ) \
i f n s te ps i s not None e lse theano . funct ion ( inputs =[x , y ] , outputs= c o s t v a l )

s e l f . t r a i n f u n c t i o n = t r a i n f u n c t i o n
s e l f . v a l i d a t i o n f u n c t i o n = v a l i d a t i o n f u n c t i o n

def s y m b o l i c v a r i a b l e s ( s e l f , ∗∗kwargs ) :
”””
Symbo l i c v a r i a b l e s o f t h e model .
By d e f a u l t on ly x , y and masks a r e d e f i n e d . I f w i t h i n f o i s p r o v i d e d , th en
t h e number o f s t e p s i s a l s o added .

: param kwargs :
: r e t u r n : d i c t i o n a r y with s y m b o l i c v a r s
”””
vars = {}
vars [ ’ x ’ ] = T . tensor3 ( ’ x ’ )
vars [ ’ y ’ ] = T . tensor3 ( ’ y ’ )
vars [ ’ mask x ’ ] = T . matrix ( ’ mask x ’ )
vars [ ’ mask y ’ ] = T . matrix ( ’ mask y ’ )

i f ” wi th i n f o ” in kwargs :
i f ( kwargs . get ( ” w i t h i n f o ” ) ) :

vars [ ’ n s t ep s ’ ] = T . l s c a l a r ( ’ t a r g e t t i m e s t e p s ’ )

return vars

Finally, we also provide an early stopping mechanism to allow the user more flexibility
while choosing the number of epochs for the training. Moreover, we also provide more ad-
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vanced models such as sequence to sequence with and without the attention mechanism where
the model allows the decoder to take a peek at the target during training. Thus, the decoders
developed allow to take a peek at the target to increase the performance, while a more ad-
vanced decoder is equipped with an attention mechanism which allows to align the input with
the output.

A current limitation of the framework is that the models does not, yet, support saving and
loading its configuration.

A.2.3 Usage example

Using a model with our framework is extremely simple and requires very little code. An ex-
ample of a single GRU layer to learn a sinusoidal signals is presented below:

from l 2 f d e e p l . l a y e r s . gru import ∗
from l 2 f d e e p l . l a y e r s . lstm import ∗
from l 2 f d e e p l . l a y e r s . b i d i r e c t i o n a l l a y e r import ∗
from l 2 f d e e p l . models . s tacked import ∗
from l 2 f d e e p l . l a y e r s . dense import TimeDistributedDense
from l 2 f d e e p l . opt imizat ion . l o s s f u n c t i o n s import mean squared error as mse , masked cost
from l 2 f d e e p l . opt imizat ion . opt imizers import adam

i f name == ” main ” :
import numpy as np
n f e a t = 1
n t imesteps = 1200
n samples = 10
n f e a t t g t = 64

model = StackedLayers ( n f e a t , [ n f e a t , 256 , 128 , n f e a t t g t ] ,
n f e a t , l a y e r =BiGRU)

x = np . random . random ( ( n samples , n t imesteps , n f e a t ) ) . astype ( theano . conf ig . f l o a t X )
y = np . random . random ( ( n samples , n t imesteps , n f e a t t g t ) ) . astype ( theano . conf ig . f l o a t X )

x v a l = np . random . random ( ( n samples , n t imesteps , n f e a t ) ) . astype ( theano . conf ig . f l o a t X )
y va l = np . random . random ( ( n samples , n t imesteps , n f e a t t g t ) ) . astype ( theano . conf ig . f l o a t X )
t r a i n d a t a = {}
t r a i n d a t a [ ’ x ’ ] = x
t r a i n d a t a [ ’ y ’ ] = y

v a l i d a t i o n d a t a = {}
v a l i d a t i o n d a t a [ ’ x ’ ] = x v a l
v a l i d a t i o n d a t a [ ’ y ’ ] = y va l
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n epochs = 5

model . minibatch update ( data , v a l i d a t i o n d a t a , n epochs )

A.2.4 Future Development

A better version is currently being developed, cleaner and more abstract, as well as more flex-
ible. This version will support more features, such as convolutional layers, better sampling
(beam search), embeddings layers, among others. This is yet another deep learning framework
which is in a very early stage.
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