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Na última década métodos de Query-by-example têm recebido um enorme interesse por
parte da comunidade MIREX . Técnicas para identificar a semelhança no audio são bastante uti-
lizadas para um sistema de Query-by-example. No entanto as técnicas atuais de semelhança
de áudio ignoram informação sequencial. Neste trabalho, descrevemos as principais aborda-
gens de semelhança de áudio e propomos a adaptação de algumas dessas técnicas, o algoritmo
dynamic time warping e o modelo locally weighted bag-of-words para incorporar informação se-
quencial. Com esta adaptação o nosso objetivo é proporcionar um sistema Query-by-example
com uma melhor correspondência de áudio e a capacidade de lidar com as relações subjacentes,
entre as features, que são reconhecidas no domı́nio musical.





In the last decade Query-by-example methods have received a huge interest by the MIREX
community. Audio matching is commonly used for a query-by-example model. However cur-
rent audio matching techniques ignore sequential information. In this work, we describe the
main approaches for audio matching and propose the adaptation of some of those techniques,
dynamic time warping and locally weighted bag-of-words to incorporate sequential informa-
tion. With this adaptation our goal is to provide a query-by-example with better audio match-
ing and the ability of dealing with underlying relations between the features that are known to
exist in the musical domain.
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1
Large music collections are easily accessible due to rapid evolving technology, providing

new opportunities for research using these collections to discover trends and patterns in music
(Casey, Veltkamp, Goto, Leman, Rhodes, and Slaney 2008). With music information retrieval,
it is possible to develop a strategy to compute similarity between segments of songs, in order
to provide new services, such as, detecting copyright violations or query by example. Music
teachers, students, and even hobbyists, sometimes need more music material to practice their
technical skills, instead of repeating the same pattern/exercise over and over. Students often
end up in a situation where they are practicing a technique in a song due to a specific section
and have the need for more songs with section/sections similar to that one. The time spent
searching is sometimes longer than the time available for practice since it is not easy finding
songs with similar sections in a large database.

Music information retrieval (MIR) is the interdisciplinary science of retrieving information
from music. MIR is a growing field of research with many real-world applications such as
creating recommender systems or automatic music transcription. To help strive the MIR com-
munity MIREX was created. MIREX is a community dedicated to Music Information Retrieval
where several tasks are proposed with the objective of comparing state-of-the-art algorithms
in tasks, such as audio cover song detection, onset detection, symbolic music similarity and
query-by-humming.

Query-by-example methods have been target of interest by the MIREX community in the
last decade. These methods differ from audio classification as its key issue is how to model
each audio segment rather than each audio category (Hu, Liu, Jiang, and Yang 2014). The
issue of audio segment modeling is not to be taken lightly (Casey, Veltkamp, Goto, Leman,
Rhodes, and Slaney 2008). In the mid-to-low audio similarity specificity range, the user seeks
specific musical content of the query audio but not necessarily the same audio content. These
are among the most challenging problems for audio similarity-based MIR systems with less
specific retrieval tasks still mostly unsolved.

In thematically-driven retrieval, or fragment-level retrieval scenarios, the query consists of
a short fragment of an audio recording. The goal is to find all fragments of a given music collec-
tion that are related to the query even though entire songs are returned as matches. Typically,
such fragments may cover only a few seconds of audio content or may correspond to a theme,
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or a musical part of a recording. We can further specify this retrieval being thematically-driven
audio matching where the goal is to retrieve all audio fragments that musically correspond
to a query fragment from all audio documents contained in a given database. In this case,
one explicitly allows semantically motivated variations since they typically occur in different
arrangements and performances of a piece of music. These variations include significant non-
linear global and local differences in tempo, articulation, and phrasing as well as differences
in executing note groups such as grace notes, trills, or arpeggios (Grosche, Müller, and Serrà
2012).

The problem we face is the creation of a query-by-example system that thematically re-
trieves musical pieces given a musical fragment. There are some difficulties inherent to this
problem for instance how similar are two songs? There are objective and subjective similarity
measures, however for experimental purposes objective measures are preferred. Another diffi-
culty is in the feature extraction process, this can interfere with how we model a song and how
we perform audio matching. Another problem is the music genre, such as classical, pop, rock,
among others. Finally the key issue lies in the method we use to perform our audio modeling.

Given a musical fragment as input, produce as output a ranked list of thematically related
musical pieces based on tempo, articulation and phrasing. Our system will be based on the lo-
cally weighted bag-of-words (Lebanon, Mao, and Dillon 2007; Lebanon 2012) to easily identify
thematic trends across songs. Popular music will be used in this work for evaluation purposes
given its wide corpus availability.

This thesis is divided into three main logical parts. The first part (chapter 2) is related to
the state-of-the-art which describes how audio matching is done as of the writing of this thesis.
We start by reviewing a continuous probability distribution model, Gaussian Mixture Models
in audio similarity retrieval, we analyze bag-of-audio-words approaches similar to the bag-
of-words model used in text processing, and we review applications of topic models to audio
retrieval, such as Hierarchical Dirichlet Process and Latent Dirichlet Allocation.

The second part (chapters 3 and 4) describe the work and subsequent achieved results. It
starts with a case study regarding feature extraction and audio matching and respective ex-
periments/results, then the construction of the query-by-example system and obtained results
with the datasets.

The third part (chapter 5) is made of conclusions as well as the definition of future work to
be done.
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The chapter is divided into two main sections: section 2.1 begins by describing the typical

architecture for a query-by-example system. It also describes each module of the architecture
in greater detail. Section 2.2 presents some query-by-example systems taking into account the
architecture described in section 2.1. Finally, we discuss and build a comparison table of all of
the systems.

Query-by-Example systems share a common three stage architecture as shown in Figure
2.1.

From the audio query, systems start by using feature extraction module followed by a
query engine, followed by an audio matching stage. Table 2.1 describes the main responsibility
of each stage. The following subsections will explain each of the mentioned steps in greater
detail.

Stage Responsibility
Feature Extraction Audio signal characteristics
Query Engine Robust feature modeling
Audio Matching Distance comparison and ranked sort

Table 2.1: Typical Query by Example Architecture Description.

Figure 2.1: Typical Stages for Query-by-Example.
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2.1.1 Feature Extraction

For audio matching to work we must first obtain features that represent the audio signal
with a certain degree of robustness. Examples of those features are: timbre, melody, rhythm,
pitch, among others. Depending on the task at hand, some features will be more useful than
others. For instance, if the task is musical instrument recognition or genre detection, a tim-
bre related feature, such as Mel-frequency Cepstrum Coefficients, will be more useful than a
rhythm feature.

A good feature vector in this case is one that can represent audio structure properly while
also having low dimensionality and robustness to some harmonic changes as described in Sec-
tion 1.2.

2.1.1.1 Chroma Vector

The most popular feature currently used for the task of audio matching is the chroma
vector, in particular for detecting harmony-based relations. Chroma features have turned out
to be a powerful mid-level representation for comparing and relating music data in various
realizations and formats.

Chroma-based audio features are obtained by pooling a signal’s spectrum into twelve bins
that correspond to the twelve pitch classes or chroma of the equal-tempered scale. Identifying
pitches that differ by an octave, chroma features show a high degree of robustness to variations
in timbre and are well-suited for the analysis of Western music which is characterized by a
prominent harmonic progression. The temporal evolution of these chroma vectors is called
chromagram, It has been widely used in literature for audio matching to better understand the
degree of robustness of the chroma features.

2.1.1.2 Chroma Variations

There have been several improvements/variations over the standard chroma vector. Two
considerably important variations for audio matching can be found in the Chroma Toolbox
Chroma Energy distribution Normalized Statistics CENS and CRP (Müller and Ewert 2011a).

2.1.1.2.1 CENS In computing CENS features, each chroma vector is first normalized with
respect to the L1-norm thus expressing relative energy distribution. Then, a quantization
is applied based on suitably chosen thresholds. Here, choosing thresholds in a logarithmic
fashion introduces some kind of logarithmic compression.

In a subsequent step, the features are further smoothed over a window of length w and
downsampled by a factor of d. The resulting features are normalized with respect to the L2-
norm and denoted by CENSwd

The CENS feature sequences correlate closely with the smoothed harmonic progression of
the underlying audio signal. Other parameters, however, such as dynamics, timbre, or articu-
lation are masked out to a large extent.

The normalization makes the CENS features invariant to dynamic variations. Furthermore,
using chroma instead of pitches not only takes into account the close octave relationship in
both melody and harmony as typical for Western music, but also introduces a high degree of
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robustness to variations in timbre. Then, applying energy thresholds makes the CENS features
insensitive to noise components as may arise during note attacks.

Finally, taking statistics over relatively large windows not only smooths out local time
deviations as may occur for articulatory reasons but also compensates for different realizations
of note groups such as trills or arpeggios (Müller, Kurth, and Clausen 2005).

2.1.1.2.2 CRP Starting with the Pitch features, a logarithmic compression is applied and
transforms the logarithmized pitch representation using a Discrete Cosine Transform (DCT).
Only the upper coefficients of the resulting pitch frequency cepstral coefficients (PFCCs) are
kept. Afterwards an inverse DCT is applied and finally the resulting pitch vectors are projected
onto 12-dimensional chroma vectors, which are then normalized with respect to the L2-norm.

These vectors are referred to as CRP (Chroma DCT-Reduced log Pitch) features. The upper
coefficients to be kept are specified by a parameter n 2 [1 : 120]. As reported by Müller and
Ewert (2010), the parameter n = 55 yields good results. The resulting features are denoted by
CRP[n] (Müller, Ewert, and Kreuzer 2009).

2.1.1.3 Chords

Chords are mid-level musical features which concisely describe the harmonic content of
a piece. This is evidenced by chord sequences often being sufficient for musicians to play
together in an unrehearsed situation (McVicar, Santos-Rodrı́guez, Ni, and De Bie 2014).

Ni, Mcvicar, Santos-Rodriguez, and De Bie (2012) proposed a new machine based system
called Harmony Progression Analyzer (HPA).

HPA is a machine learning system for the harmonic analysis of popular musical audio. It
is focused on chord estimation, although the proposed system additionally estimates the key
sequence and bass notes (Ni, Mcvicar, Santos-Rodriguez, and De Bie 2011).

2.1.2 Query Engine

After the features have been extracted we need to represent the extracted features in a mod-
eling framework. The chosen model can be Gaussian Mixtures, Histograms or Topic models,
and the model is implicitly related with the audio matching stage (Hu, Liu, Jiang, and Yang
2014; Helén and Virtanen 2007; Casey, Veltkamp, Goto, Leman, Rhodes, and Slaney 2008).
These models will be further described in section 2.2. Afterwards, the received query also
needs to have its features modeled so that we can move to the audio matching stage where we
compare the query against the database.

2.1.3 Audio Matching

Audio Matching is the stage where we compare the query and database given a certain
feature and representation of choice. Since we are interested in comparing sequences of dif-
ferent lengths, the queries are usually short fragments and songs are comprised of multiple
fragments. This stage becomes one of solving a subsequence audio matching problem. The
comparison is made through a distance measure where we calculate the similarity between a
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Figure 2.2: Components of the harmony progression analyzer (HPA). (Taken from (Ni, Mcvicar,
Santos-Rodriguez, and De Bie 2011))
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query and a song. In the literature there are various algorithms proposed to handle the subse-
quence matching, most of them use dynamic programming, such as Dynamic Time Warping
(Shokoohi-Yekta, Wang, and Keogh 2015), SPRING (Sakurai, Faloutsos, and Yamamuro 2007),
Time Warped Longest Common Subsequence (TWLCS) (Guo and Siegelmann 2004). The pur-
pose of this stage is to automatically retrieve and rank all songs that musically correspond to a
query from all the audio documents contained in the database.

A typical approach in global matching is to calculate the euclidean distance between the
query and the songs but other more meaningful approaches dependent on the modeling can
also be used, such as Fisher’s distance (Lebanon, Mao, and Dillon 2007).

2.1.3.1 Dynamic Time Warping

The main idea of Dynamic Time Warping (DTW) is to align two sequences without the
restriction of having same length and find point-to-point alignment that minimizes the error
between the two sequences. In DTW, an individual element of one sequence can be matched
with at least one and possibly more elements of the other sequence, thus allowing for each
sequences to be stretched locally along the time axis. This method is usually computed by
dynamic programming. The dynamic time warping cost D(i, j) is defined as follows:

D(0, 0) = 0. (2.1)

D(0, j) = 1. (2.2)

D(i, 0) = 1. (2.3)

D(i, j) = d(i, j) +min

8
<

:

D(i, j � 1)
D(i� 1, j)
D(i� 1, j � 1)

(2.4)

8(i = 1, ..., |Q|; j = 1, ..., |X|) D(Q,X) = D(|Q|, |X|). (2.5)

Notice that d(i, j) is the Lp norm difference of i and j.

By placing an additional constraint, which narrows down the set of positions in one se-
quence that can be matched with a specific position in the other sequence we obtain the Con-
strained DTW (cDTW). Given a warping width w, the constraint is defined as follows:

D(i, j) = 1 IF |i� j| > w (2.6)

cDTW has been shown to be significantly more efficient than DTW for full sequence match-
ing and to also produce more meaningful matching scores.

Shokoohi et al. studied the Multidimensional DTW case. The DTW distance is applicable to
only single-dimensional sequences leaving open the question of how to extend it to the multi-
dimensional sequences. Considering two M-dimensional sequences Q and C, the authors show
two possible approaches for doing this, DTWI and DTWD.
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DTWI is the cumulative distance of all dimensions independently measured under DTW.
If DTW(Qm,Cm) is defined as the DTW distance of the mth dimension of Q and the mth di-
mension of C, we can write DTWI as:

DTWI(Q,C) =
MX

m=1

DTW (Qm,Cm) (2.7)

In Eq. 2.7, each dimension is considered to be independent and DTW is allowed the free-
dom to warp each dimension independently of the others.

The multi-dimensional DTW can also be computed in a manner that forces all dimensions
to warp identically. In other words, the independence of dimensions is no longer allowed and
the we assume mutual dependence between all dimensions.

DTWD is calculated in a similar way to DTW for single-dimensional sequences, except
that we redefine D(qi, cj) as the cumulative squared Euclidean distances of M data points
instead of the single data point used in the more familiar one-dimensional case. Formally, if
qi,m is the ith data point in the mth dimension of Q and cj,m is the jth data point in the mth

dimension of C, we replace D(qi, cj) with:

D(qi, cj) =
MX

m=1

(qi,m � cj,m)2 (2.8)

2.1.3.2 SPRING

Both DTW and cDTW described above, need to use a sliding window in order to determine
optimal subsequence match of a query in a large database. SPRING uses the same recursive
definitions as those used by DTW, however it allows a warping path to start at any position
of the target sequence and not always the first as in the case of DTW (Sakurai, Faloutsos, and
Yamamuro 2007). This is possible due to an extra ”sink” state, the differences in regard to DTW
equations 2.2 and 2.5 are respectively:

D(0, j) = 0. (2.9)

D(Q,X) = min
j21,...,|X|

D(|Q|, j). (2.10)

T (i, j) = min

8
<

:

T (i� 1, j � 1) + S(xi, yi)
T (i� 1, j) + gapPenalty
T (i, j � 1) + gapPenalty

(2.11)

2.1.3.3 Time-Warped Longest Common Subsequence Algorithm

TWLCS was conceived in a query by humming scenario where they want to deal with
singing errors involving rhythmic distortions. Specifically it merges DTW with the Longest
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Common Subsequence algorithm (LCS) (Guo and Siegelmann 2004). The longest common sub-
sequence algorithm belongs to the edit distance family of string matching algorithms, specifi-
cally, the LCS finds the longest subsequence that two sequences have in common, regardless of
the length and number of intermittent non-matching symbols.

Formally, the LCS algorithm has the following recurrence equation, where the cost for the
edit operations is stored in c.

c(i, j) =

8
<

:

0 IF i = 0 or j = 0
c(i� 1, j � 1) + 1 IF i, j > 0 and Xi = Y j

max[c(i, j � 1), c(i� 1, j)] IF i, j > 0 and Xi 6= Y j

9
=

; (2.12)

Using LCS as a similarity measure between two sequences has the advantage that the two
sequences we are comparing can be of different length and have intermittent non-matches.

Taking the desirable properties of LCS and DTW, TWLCS is defined by the following re-
currence formula:

c(i, j) =

8
<

:

0 IF i = 0 or j = 0
max[c(i, j � 1), c(i� 1, j)], c(i� 1, j � 1) + 1 IF i, j > 0 and Xi = Y j

max[c(i, j � 1), c(i� 1, j)] IF i, j > 0 and Xi 6= Y j

9
=

;

(2.13)

Combining DTW ability to handle the expansion and contraction of the sequences with
LCS ability that two sequences being compared can be of different length and have intermittent
non-matches, in the music retrieval context this allows for the use of partial and noisy inputs
and also variations in speed.

For example, if 44556677 or 42536172 were matched against 4567, the output should be a
higher score in the first match, but LCS outputs 4 in both. With TWLCS the match between
44556677 with 4567 receives a score of 8.

The general consensus in audio matching tasks is that the approaches can be grouped
into three large categories: Gaussian Mixture Models (GMM), Histograms (Bag-of-Words) and
Topic Models (Hu, Liu, Jiang, and Yang 2014; Helén and Virtanen 2007; Casey, Veltkamp, Goto,
Leman, Rhodes, and Slaney 2008).

2.2.1 Music Retrieval using Gaussian Mixture Modeling

A Gaussian Mixture Model (GMM) is a probabilistic model that assumes all the data points
are generated from a mixture of a finite number of Gaussian distributions with unknown pa-
rameters. GMM estimates probability density as the weighted sum of these simpler Gaussian
densities, called components of the mixture. They are often used for clustering. The clusters are
assigned by the component that maximizes the posterior probability, and like k-Means, GMM
uses an iterative algorithm.
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Figure 2.3: Block diagram for GMM Representation (Pachet and Aucouturier 2004).

The Gaussian Mixture Model is defined in Eq. 2.14

p(Ft) =
MX

m=1

cmN(Ft, µm, ⌧m). (2.14)

where Ft is the feature vector observed at time t, N is a Gaussian pdf with mean µm, covari-
ance matrix ⌧m, and cm is a mixture coefficient.

GMMs of Mel-Frequency Cepstrum Coefficients have been widely used and researched in
MIR (Aucouturier and Pachet 2002b; Aucouturier and Pachet 2002a; Helén and Virtanen 2007;
Aucouturier and Pachet 2008; Casey, Veltkamp, Goto, Leman, Rhodes, and Slaney 2008). Since
this approach has been widely researched, its strong and weak aspects are well known. In
terms of high-level descriptions of music signals, such as genre, mood or computing timbre
similarity between songs, the GMM approach is the most predominant paradigm having led to
some success. However, latest research by Aucouturier and Pachet shows this approach has a
performance glass-ceiling for polyphonic timbre similarity at around 70% precision even after
exhaustive fine-tuning or applying delta-coefficients or Markov modeling. One possible cause
for this glass-ceiling in precision is the existence of hubs, false positives which are mostly the
same songs regardless of the query, so hubs are songs which are irrelevantly close to all other
songs. Further research regarding these hubs has been done by Aucouturier, Defreville, and
Pachet (2007) and Pachet (2008).

2.2.1.1 Aucouturier et Pachet (2004)

The authors researched the application of Gaussian Mixture Models for music similarity
purposes and its similarity measures (Aucouturier and Pachet 2002a; Aucouturier and Pachet
2002b; Pachet and Aucouturier 2004). Their main music similarity focus is regarding global
timbral quality, since music taste is often correlated with timbre. Additionally timbre similarity
is a natural way to build relations between music titles.

For the feature extraction they cut the signal into 2048 points frames (50ms) and computed
for each frame the short-time spectrum. Afterwards, they used Mel Frequency Cepstrum to
estimate the spectral envelope of each frame, in order to obtain a timbre measure independent
of pitch they only used the first 8 coefficients resulting in a feature vector of dimension 8 for
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each frame. The choice of MFCC is that this feature explains a large part of the timbre of
instruments and is a good representation of the ”local timbre” of the frame.

In the Gaussian Mixture Modeling they initialized the GMMs parameters by k-Mean clus-
tering and modeled the distribution of each song’s MFCCs as a mixture of Gaussian distri-
butions over the space of all MFCCs. The authors trained the model with the Expectation-
Maximization algorithm (Bishop 1995). They thoroughly explored the influence of the follow-
ing parameters with the original algorithm, the Signal Sample Rate (SR), number of MFCCs
(N), number of components (M), distance sample rate (DSR), and window size by fixing all but
one parameter at a time to evaluate its influence.

Their findings were that the SR had a positive influence on the precision, probably due to
the increased bandwidth of the higher definition signals which enables the algorithm to use
higher frequency components than with low SR. The DSR also has a positive influence on the
precision when it increases from 1 to 1000 (further increase has little influence). They also
found that the optimal DSR is not dependent of either N or M. In regards to N and M, they
made a complete exploration of the associated 2-D space having N vary between 10 to 50 by
steps of 10 and M from 10 to 100 by steps of 10. This showed that the previous values for
the chosen algorithm of N=8 and M=3 were not optimal (Aucouturier and Pachet 2002a). Too
many MFCCs (N � 20) hurt the precision. Increasing the number of components at fixed N,
and increasing N at fixed M is detrimental to the precision as well. They also note that the
number of MFCCs is a more critical factor than the number of Gaussian components therefore
a decrease in M to values smaller than the optimal does not hurt the precision. The window
size experiment showed that it has a small positive influence on the precision when it increases
from 10 to 30ms, but further increase up to 1s has a negative effect.

After the experiment, the optimal values for their music similarity task were a value of
44kHz for the Sample rate, the number of chosen MFCCs was 20, the number of Gaussian
components used to model MFCCs was 50 Gaussian distributions, and a distance sample rate
of 2000. Then, they computed the distance between models with the classical Kullback-Leibler
distance (Bishop 1995).

The corpus (Aucouturier and Pachet 2002a) consisted of 17,075 popular music titles to-
gether with metadata such as information about artists, genres, among others. For each title its
”timbral distance” was computed against all the other titles and the evaluation showed very
poor results regarding a query on genre based on timbral distance (14.1%).

A different evaluation metric was used by Pachet and Aucouturier (2004): the R-precision
which is the standard within the Text Retrieval Conference, and is the precision measured after
R documents have been retrieved, R being the number of relevant documents. For a given
query on a song Si belonging to a cluster CSi of size Ni, the precision is given by Eq. 2.15,

p(Si) =
|(Sk/CSk = CSi and R(Sk)  Ni)|

Ni
, (2.15)

where R(Sk) is the rank of song Sk in the query on song Si. The corpus consisted of 350 songs
from 37 artists chosen in order to have ”timbrally” consistent clusters.

The evaluation obtained was 48 R-Precision (Aucouturier and Pachet 2002a). With further
optimization taking into account the exploration on the influence of the parameters (Pachet
and Aucouturier 2004), they were able to raise the value to 65 R-Precision and they suggested
there was a glass-ceiling at around this precision.
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Figure 2.4: Query-by-example GMM Architecture (Helén and Virtanen 2007).

2.2.1.2 Helén et Virtanen (2007)

GMMs were used to develop a query-by-example system. Additionally, the authors also
defined a method to calculate the Euclidean distance between two GMMs for audio retrieval
(Helén and Virtanen 2007).

For their feature extraction step, the input signal was divided into 46ms frames and a set of
features was extracted for each frame. The frequency content of the frame is characterized us-
ing three Mel-frequency cepstral coefficients, spectral centroid, noise likeness, spectral spread,
spectral flux, harmonic ratio, and maximum autocorrelation lag. The Temporal characteristics
of the signal are described using zero crossing rate, crest factor, total energy, and variance of
instantaneous power. Each of the extracted features is normalized to have zero mean and unity
variance over the whole database.

In the Gaussian Mixture Modeling the authors used two methods for estimating the pa-
rameters of the GMMs. The first, used Expectation-Maximization algorithm to estimate the
means and variances for a fixed number of components. The second used the Parzen-window
approach which assigns a GMM component with fixed variance for each observation. The
number of Gaussians used in the EM algorithm was 8 and the feature variances were restricted
above unity. In the Parzen-Euclidean method the authors tested different variances and �2 = 2
produced approximately the best results.

Regarding the similarity measure the Euclidean distance was used. It consists of determin-
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ing the similarity of two samples by measuring the square of the Euclidean distance between
their Gaussian distributions p1(x) and p2(x). This is obtained by integrating the squared
differences over the whole feature space:

e =

Z 1

�1
[p1(x)� p2(x)

2]dx. (2.16)

The corpus consisted of 240 samples with 16kHz sampling rate. The lengths varied be-
tween 5 and 30 seconds and the samples were manually annotated into 4 classes. The evalua-
tion comprised of drawing one sample at a time to serve as an example for a query and the rest
served as the database. A database sample was correctly retrieved if it was annotated into the
same class as the example.

The query was repeated using each of the S samples as the example, resulting in altogether
S(S � 1) pairwise comparisons. The number of correctly retrieved samples cu was calculated
for each class u 2 1, 2, 3, 4. The ratio of correctly retrieved samples to all the comparisons is
given by the average of recall of each query

recall(u) =
cu

Su(Su�1)
, (2.17)

where Su is the total number of samples in the class u. The ratio of correctly classified
samples to all the samples ru retrieved for class u examples is given by the precision

precision(u) =
cu
ru

. (2.18)

The overall precision and recall were estimated for the whole database as the average of
the class-wise precision and recall.

Obtained results were higher in comparison to previous query by example methods based
on histograms of features and likelihoods of GMMs (Helén and Virtanen 2007). The Parzen-
Euclidean method produced the best results on average, with 5 p.p higher average precision
and recall than the EM-likelihood method and 13 p.p higher than the histogram method. The
comparison between likelihoods of GMMs showed that the average precision and recall rates
increased from 65% to 70% with the Parzen-Euclidean.

2.2.1.3 Summary

GMM is typically an unsupervised technique and is also a basic but useful algorithm to be
used in clustering.

The main advantage of using GMM is because it is a probabilistic model that assumes all
the data points are generated from a mixture of a finite number of Gaussian distributions with
unknown parameters therefore there is no loss of information.

The main disadvantages are that it is hard to fit the best mixture of Gaussians as could be
seen in the work by Aucouturier et Pachet, the fitting is exponential in the assumed number
of latent Gaussian distributions, and GMMs have achieved a glass-ceiling in precision (Aucou-
turier and Pachet 2002a).
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2.2.2 Music Retrieval using Histograms

Bag-of-words models can be generically defined as an orderless document representation
given certain frequencies of words from a dictionary, in other words, a sparse vector of occur-
rence counts of words. These models are characterized by having two main steps.

After performing a feature extraction step, where features of choice, such as Chroma or
MFCC are extracted, the feature representation step is performed. Each music is abstracted
by several vectors called feature descriptors. A good descriptor should have the ability to be
robust to changes up to some extent.

Vector quantization or codebook generation consists in converting vector represented fea-
tures of a song to audio-words, which also produces a ”codebook”. An audio-word can be con-
sidered as a representative of several similar feature vectors. Typically, the simplest method
is performing k-Means clustering over all the vectors. Audio-words are then defined as the
centers of the learned clusters. The number of the clusters is the codebook size. Finally, each
song can be represented by the histogram of the audio-words, given the centers of the learned
clusters and audio-word frequencies, this final step is named, histogram construction.

The representation of a song by its histogram of audio-words is rich, and is also capable of
capturing the sequential information by extending it to weight the audio-words based on the
histogram.

Bag-of-words have been widely applied and researched in text domain obtaining good
results (Lebanon, Mao, and Dillon 2007; Lebanon 2012). It also has been applied to the music
domain with good results (Riley, Heinen, and Ghosh 2008; Zhu 2013; Lu and Cabrera 2012).

2.2.2.1 Lebanon et al.(2007)

Lebanon et al. created a representation of the bag-of-words where it is possible to have
a continuous and differentiable sequential representation (Lebanon, Mao, and Dillon 2007).
This representation goes beyond the traditional bag-of-words representation and its n-gram
extensions by being able to capture sequential information, and yet it is efficient and effective.
It is called locally weighted bag-of-words (LOWBOW).

The smoothing method employed in the traditional bag-of-words model is categorical
rather than temporal since no time information is preserved. And temporal smoothing has
far greater potential than categorical smoothing since a word can be smoothed out to varying
degrees depending on the temporal difference between the two document positions. With this
in mind, the main idea behind the LOWBOW is to use a local smoothing kernel to smooth the
original word sequence temporally, by borrowing the presence of a word at a certain location in
the document to a neighboring location but discounting its contribution depending on the tem-
poral distance between the two locations. To handle the problem that several words can occupy
one location through temporal smoothing of words, the authors provided a broader definition
of a document (Lebanon, Mao, and Dillon 2007) ultimately resulting in an association between
a document location with a local histogram or a point in the simplex.

The multinomial simplex Pm for m > 0 is the m-dimensional subset of Rm+1 of all
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probability vectors or histograms over m+ 1 objects

Pm = ✓ 2 Rm+1 : 8i✓i � 0,
m+1X

j=1

✓j = 1. (2.19)

Its connection to the multinomial distribution is that every ✓ 2 Pm corresponds to a multi-
nomial distribution over m+ 1 items.

The topological structure of Pm, which determines the notions of convergence and con-
tinuity, is naturally inherited from the standard topological structure of the embedding space
Rm+1. The geometrical structure of Pm that determines the notions of distance, angle, and
curvature is determined by a local inner product g✓(., .), ✓ 2 Pm, called the Riemannian metric.

The authors proved theorems regarding the LOWBOW, specifically

Theorem 1 The LOWBOW representation is a continuous and differentiable parameterized curve in
the simplex, in both the Euclidean and the Fisher geometry.

Theorem 2 Let Kµ,� be a smoothing kernel such that when � ! 1, Kµ,� (x) is constant in µ, x.
Then for � ! 1, the LOWBOW curve �(y) degenerates into a single point corresponding to the bow
representation.

Theorem 3 The LOWBOW curve �(y) satisfies ||�µ(y)� �⌧ (y)||2  |µ� ⌧ |O(K), 8µ, ⌧ 2 [0, 1].

Where O(K) is a Lipschitz constant. As a result of the lowbow curve being Lipschitz con-
tinuous, the curve complexity is connected with the shape and scale of the kernel. Thus, we
can represent LOWBOW in a finite dimensional space by sampling the path at representative
points µ1, ..., µl 2 [0, 1].

Given a Riemannian metric g on the simplex, its product form

g
0
✓(u, v) =

Z l

0
g✓(t)(u(t), v(t))dt (2.20)

defines a corresponding metric on LOWBOW curves. This results in geometric structures
that are compatible with the base metric g, such as distance or curvature. For example, the
distance between LOWBOW representations of two word sequences �(y), �(z) 2 P[0,1]

m is the
average distance between the corresponding time coordinates

d(�(y), �(z)) =

Z 1

0
d(�µ(y), �µ(z))dµ (2.21)

The integrated distance formula in Eq. 2.21 allows the possibility to adapt distance-based
algorithms to the LOWBOW representation. To use a distance-based algorithm with LOWBOW
we just need to replace its standar distance such as the Euclidean distance with LOWBOW’s
integrated distance or its discretized version.
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Figure 2.5: Block diagram for ”Bag-of-Audio-Words” Representation (Riley, Heinen, and
Ghosh 2008).

In summary, this representation generalizes bag-of-words by considering the collection of
local word histograms throughout the document. In contrast to n-grams, which keep track of
frequently occurring patterns independent of their positions, LOWBOW keeps track of changes
in the word histogram as it sweeps through the document from beginning to end (Lebanon,
Mao, and Dillon 2007). In contrast to n-gram, LOWBOW captures topical trends, and incor-
porates long range information. On the other hand, it is possible to combine the two, so the
LOWBOW is orthogonal to n-gram (Lebanon 2012). The ability to capture topical trends and
keep track of sequential information is by having the LOWBOW curves.

LOWBOW is represented employing smooth curves in the multinomial simplex. With this
representation there are interesting geometrical features to be used in modeling, applied to
tasks of retrieval, classification, filtering, segmentation, and visualization. The distance be-
tween LOWBOW curves can be used in various modeling tasks, such as K-nearest neighbors,
SVM, or even constructing generative models. Other geometrical features can be used, such
as the instantaneous direction of the curve which describes sequential topic trends and their
change.The authors showed several applications of the LOWBOW framework, such as to text
classification with nearest neighbors or support vector machines, text segmentation tasks and
applied Dynamic Time Warping of LOWBOW curves.

The LOWBOW framework achieved good results in practice for the referred experiments.
And it has also achieved good results in the scope of video however it has still not been applied
in MIR.

2.2.2.2 Riley et al. (2008)

Riley, Heinen, and Ghosh (2008) took the Bag-of-words approach from text retrieval and
applied it in audio similarity retrieval, renaming the representation to a Bag-of-Audio-Words
(BOAW). They also showed that a technique based on methods for text retrieval performs well,
having practical applicability and benefiting from established research in the area.

First they segmented the audio in non-overlapping 200 millisecond clips. Then for the fea-
ture extraction they chose the normalized 12-dimension Chroma feature. Their main reasoning
behind this choice is the performance of the audio-word histogram representation, this way
feature vectors for an audio segment and distorted version are very similar.

Then, they performed a vector quantization step, which consists mostly of performing clus-
tering in the 12-dimensional Chroma space. The clustering identifies k dense regions within a
set of Chroma features extracted from the data set, referred as audio-words. Thereafter, the
nearest audio-word is calculated for any Chroma feature extracted from a song segment and
that segment will be considered as an occurrence of that audio-word. For the clustering, they
collected approximately 100,000 Chroma vectors from a variety of songs separate from the test
set and used k-Means to compute the k audio-words.
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In summary, the vector quantization takes as input a song’s sequence of Chroma vectors,
and for each outputs one or more numbers corresponding to the closest audio-word(s), mea-
sured by the Euclidean distance.

Finally, the last step is the histogram construction, where the song x is mapped to a k-
dimensional vector, which encodes the frequency of each audio-word occurrence in the song.
Since they represented individual Chroma vectors by the cluster center to which they belong, it
made equivalent in the histogram representation any segments musically very similar but with
slightly different Chroma vectors then the k terms of the audio-word histograms are weighted
according to the term-frequency inverse document frequency (TF-IDF) scheme.

They experimented with several clustering algorithms in the Vector Quantization besides
K-Means, such as GMMs with expectation maximization. However most of these other algo-
rithms involved greater computation and did not improve the Vector quantization step. In-
terestingly they experimentally determined the matching performance could be improved by
assigning the Chroma vector to three closest centroids instead of one.

The similarity measures used for computing the similarity between audio-word his-
tograms were the Cosine Similarity, Chi-Squared Similarity, and normalized Euclidean distance
with the Chi-Squared being the best (Riley, Heinen, and Ghosh 2008). Given a query song or
audio clip they use the similarity measure to return a ranked list of similar songs from the
database.

The evaluation was done with a data set of 4000 songs from a variety of musical genres.
60 additional tracks were selected as query songs and quantify the system’s ability to correctly
retrieve distorted versions of the tracks from within the 4060 total song set. For the first exper-
iment they evaluated the robustness to signal distortion applying a signal distortion to each
of the 60 query songs and calculated, for each similarity measure, the percentage at which the
distorted query songs were most similar to the original query songs.

The results showed that the Bag-of-Audio-Words approach had excellent retrieval accuracy
for a wide variety of distortions and was found useful in matching original studio recordings
with live performances and cover songs to a lesser degree. However with this approach all the
time-series information present in the initial song is ignored, the authors suggest this would
lead to even better performance results.

2.2.2.3 Grosche et al. (2012)

The authors discuss audio-similarity based retrieval strategies that follow the query-by-
example paradigm (Grosche, Müller, and Serrà 2012). They classify these strategies according
to their specificity, the degree of similarity between the query and the database documents:
so high-specificity refers to a strict notion of similarity whereas low specificity a vague one.
And they also classify based on granularity, where one distinguishes between fragment-level
and document-level retrieval. The classified strategies can be seen in figure 2.6. For the au-
dio identification, audio matching, and version identification the authors give an overview of
representative state-of-the-art approaches.

In Audio Matching, they used chroma-based audio features, with the reasoning being that
the descriptors had to be invariant to properties of a particular recording: chroma features are a
well-established tool for analyzing Western tonal music and suitable mid-level representation



18 CHAPTER 2. STATE OF THE ART

Figure 2.6: Specificity/granularity pane showing the various facets of content-based music
retrieval (Grosche, Müller, and Serrà 2012).
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in the retrieval context, besides closely correlate to the harmonic progression of the underlying
piece of music.

Regarding the feature extraction, they discuss and present various methods for computing
chroma features and also discuss the degree of robustness of the chroma features against mu-
sically motivated variations depending on suitable post-processing steps. The robustness can
vary from robustness to timbre to being invariant to changes in loudness or dynamics, or even
being more robust against local temporal variations. The resulting chroma features can behave
quite differently in the subsequent analysis task. For more information on variants of chroma
features and how to extract them see (Müller and Ewert 2011b).

The evaluation consists on a subsequence search, directly performed on chroma features.
Therefore a query chromagram is compared with all subsequences of database chromagrams.
Accordingly, the similarity measure consists of obtaining a matching curve where a smaller
value indicates that the subsequence is similar to the query sequence, the best match being the
minimum of the matching curve. For this purpose, it is typical to apply distance measures that
can deal with tempo differences, such as dynamic time warping (DTW), or the Smith-Waterman
algorithm (Grosche, Müller, and Serrà 2012).

To speed up these exhaustive matching procedures, the authors discuss the need for meth-
ods that allow efficient detection of near neighbors rather than exact matches. Through vector
quantization it is possible to obtain a codebook of a finite set of characteristic chroma vectors
which can be used with an inverted file indexing approach. This would allow the classification
of chroma vectors and to index them according to the assigned codebook vector. However the
performance depends greatly on the codebook and this approach is only applicable for medium
sized databases. Another, more recent approach is locality sensitive hashing (LSH) (Grosche,
Müller, and Serrà 2012). Instead of considering long feature sequences, the audio content is
split up into small overlapping short chroma feature subsequences. They are indexed using
locality sensitive hashing which allows scaling this approach to larger datasets.

In summary, the authors found mid-specific audio matching using a combination of highly
robust chroma features and sequence-based similarity measures result in a good retrieval qual-
ity. However, the low specificity of this task makes indexing much harder than in the case of
audio identification (Grosche, Müller, and Serrà 2012).

2.2.2.4 Summary

Histograms can be both discriminative in large data sets and robust to common signal
distortions while having high retrieval accuracy, and also benefits from established research in
the text domain.

The main disadvantage is that it involves a vector quantization implying discretization and
it ignores the relationships among words, which can be very important in audio representation
but with the use of LOWBOW or codebooks this disadvantage can be overcome.

2.2.3 Music Retrieval using Topic Models

Topic Models are a suite of algorithms capable of uncovering the hidden thematic structure
of large and unstructured collections of documents. The structure uncovered by topic models
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can be used to explore an otherwise unorganized collection. For example, rather than finding
documents through keyword search alone, we might first find the theme that we are interested
in, and then examine the documents related to that theme. Topic Modeling algorithms discover
not only the themes but also how those themes are connected to each other, and how they
change over time. Topic models have been adapted to many kinds of data from its origin in
text, to image and audio domain (Blei 2012).

The simplest and most intuitive topic model is the Latent Dirichlet Allocation (LDA). LDA
represents documents as mixtures of topics. Each topic has probabilities of generating various
words intuitively related to the topic. LDA makes three assumptions. One is the “bag of words”
assumption, that the order of the words in the document does not matter. Another is the order
of documents does not matter. The third assumption is that the number of topics is assumed
to be known and fixed. With this assumptions LDA is still a powerful tool for discovering and
exploring the hidden thematic structure. However by relaxing the assumptions of LDA it can
easily be used in more complicated models.

As previously mentioned, topic models have been applied in the audio domain, specifically
for audio information retrieval purposes (Hoffman, Blei, and Cook 2008; Hu 2009; Hu, Liu,
Jiang, and Yang 2014; Ren, Dunson, and Carin 2008; Kim, Narayanan, and Sundaram 2009).
They have been shown to be useful in discovering hidden topics for audio similarity retrieval
surpassing other known approaches, such as Histograms and GMMs and have already been
applied in a problem of query-by-audio as can be seen in the related work described in this
section.

2.2.3.1 Hoffman et al. (2008)

The Hierarchical Dirichlet Process (HDP) was used by the authors to discover latent struc-
ture in audio, specifically timbral similarity (Hoffman, Blei, and Cook 2008). The HDP is a
nonparametric Bayesian approach to clustering group data, it uses a Dirichlet process for each
group of data. The HDP mixture model is a generalization of Latent Dirichlet Allocation, where
the number of topics can be unbounded and learnt from data.

The way the authors chose to model songs with an HDP is through Dirichlet Process Mix-
ture Models (DPMM). HDP assumes the existence of a countably infinite set of mixture compo-
nents, overcoming the issue of GMM that assumes the existence of K mixture components. As
said before, HDP is a model of grouped data being more appropriate than GMM for modeling
collections of MFCCs, where each song is represented as a distribution over latent components
but the population of latent components is shared across songs. For a better understanding of
DPMM and HDP, the authors explain the processes with two metaphors, the Chinese Restau-
rant Process (CRP) and Chinese Restaurant Franchise (CRF), respectively (Hoffman, Blei, and
Cook 2008).

In the CRP, we imagine a Chinese restaurant with an infinite number of communal tables
and a positive scalar hyperparameter ↵. The restaurant is initially empty. The first customer
sits at the first table and orders a dish. The second customer enters and decides either to sit at
the first table with probability 1

1+↵ or a new table with probability ↵
1+↵ . When sitting at a new

table the customer orders a new dish. This process continues for each new customer, with the
tth customer choosing either to sit at a new table with probability ↵

↵+t�1 or at the kth existing
table with probability nk

↵+t�1 , where nk is the number of other customers already sitting at
table k.
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Figure 2.7: Hierarchical Dirichlet Process Graphical Representation.

The generative process underlying the HDP can be understood with the Chinese Restau-
rant Franchise (CRF). The CRF takes two hyperparameters ↵ and �. Each song j has its own
CRP, and each feature vector �j ,t chooses a table from CRP( ↵). If it sits down at a new ta-
ble, then it chooses a dish for that table from a global CRP (with hyperparameter �) shared
by all songs – that is, it either chooses a dish that is already being served at some number of
other tables m with probability proportional to m, or it chooses a new dish with probability
proportional to �.

Although the CRP was defined as a sequential process, in fact the probability of a seating
plan under the CRP is the same regardless of the order in which the customers sat down. We
can think of the CRP as defining an implicit prior on infinite multinomial distributions over
mixture components. Gibbs sampling is used to approximate the posterior distribution over
the latent variables conditioned on observed data.

The songs were represented using the HDP, allowing the comparison of two songs in terms
of the latent structure of their feature data unlike GMM-based algorithms that compare distri-
butions over the low-level features. The feature extraction involved 13 MFCCs for each frame,
approximately 23ms long, with a samping rate of 22050 Hz and no overlap. 1000 feature vec-
tors were extracted from the middle of each song, and all models were trained on the same sets
of feature vectors.

For the evaluation the authors compared the HDP against G1, GK (analogous to K-
component GMM algorithm) and a Vector Quantization approach. The dataset consisted of
121 songs from seven genres. The authors used genre as a proxy for similarity. All songs
labeled with the same genre are ”similar”, allowing the use of evaluation metrics from infor-
mation retrieval. For each query song, each other song is given a rank based on its similarity to
the query. R-precision, Average Precision, and the Area Under the ROC Curve were the metrics
chosen.

The results show the amount of time required to compute distance matrices for GMMs
was, enormous by comparison to the other models. The cost of computing the KL divergence
for VQ and HDP-based models was quite lower than the cost of computing it between single
Gaussians. HDP performed best out of all models, with VQ model being a very close second.
The HDP approach generalizes well to new songs and does not suffer from hub similarity
problem. As previously mentioned in the GMM section, hubs are an undesirable phenomenon
of having bad matches selected as similar to a query.
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Figure 2.8: (Left) Graphical model representation of LDA. (Right) Graphical model representa-
tion of the variational distribution used to approximate the posterior in LDA.(Taken from (Blei,
Ng, and Jordan 2003))

2.2.3.2 Hu (2009)

Diane Hu researched and applied LDA in the text domain and also in the image and music
domain. In the music domain, the author discusses algorithms that extend LDA for automatic
harmonic analysis and emphasizes approaches that go beyond LDA’s standard bag-of-words
representation (Hu 2009).

To better understand this model we first need to present the notation used

1. A word w 2 1, ..., V is the most basic unit of discrete data. For cleaner notation, w is a
V-dimensional unit-based vector. If w takes on the ith element in the vocabulary, then
wi = 1 and wj = 0 for all j 6= i.

2. A document is a sequence of N words denoted by w = (w1, w2, ..., wN ), where wn is the
nth word in the sequence.

3. A corpus is a collection of M documents denoted by D = (w1, w2, ..., wM ).

4. A topic z 2 1, ...,K is a probability distribution over the vocabulary of V words. Topics
model particular groups of words that frequently occur together in documents, and thus
can be interpreted as “subjects.”

For each document indexed by m 2 1, ...,M in a corpus the generative process is as fol-
lows:

1. Choose a K-dimensional topic weight vector ✓m from the distribution p(✓|↵) =
Dirichlet(↵).

2. For each word indexed by n 2 1, ..., N in a document:

(a) Choose a topic zn 2 1, ...,K from the multinomial distribution p(zn = k|✓m) = ✓km.

(b) Given the chosen topic zn, draw a word wn from the probability distribution
p(wn = i|zn = j,�) = �i j .
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The parameter ↵ is a K-dimensional parameter that stays constant over all of the docu-
ments within a corpus.

The Dirichlet distribution is given by:

p(✓|↵) = ⌧(
P

i ↵i)Q
i ⌧(↵i)

Y

i

✓↵i�1 (2.22)

The generative process given above defines a joint distribution for each document wm.
Assuming for now that parameters ↵ and � are given to us, the joint distribution over the
topic mixtures ✓ and the set of N topics z is:

p(✓, z, w|↵,�) = p(✓,↵)
NY

n=1

p(zn|✓)p(wn|zn,�) (2.23)

Now, the central task for using LDA is to determine the posterior distribution of the latent
topic variables conditioned on the words that we observe in each document.

In the automatic harmonic analysis task, the author wanted to find the key of a musical
piece. The main reason behind trying automatic key-finding is that a musical piece has a main
key, however individual passages can exhibit complex variations. The author correlated as best
as possible the notation according to the original LDA. Musical notes play the role of words,
songs are documents and the topics are the musical keys. The chosen features were 12 pitch-
class profiles. According to the LDA representation, the topics are expressed as distributions
over the 12 pitch-classes.

In summary, the generative process begins by drawing a topic weight vector from a Dirich-
let distribution, which will determine the keys present in the song. For each segment, a single
key is picked from the topic weight vector. Finally, notes are repeatedly drawn from a proba-
bility distribution conditioned by the chosen key until all the notes in the segment have been
generated. Results showed this algorithm achieved a 6 to 12% improvement over existing key-
finding algorithms.

Regarding all the experiments, LDA proved to be a versatile, generative model. Because
LDA ignores word order, the models in each domain, such as text and audio, will face the
challenge of going beyond the bag-of-words representation and incorporate order information
into their LDA framework. The most developed models that include ordering information
are in the text domain and the author proposes that directly incorporating statistics of word
transitions in the Bigram Topic Model can be very useful for harmonic analysis.

2.2.3.3 Hu et al. (2014)

Hu et al. combined the Latent Dirichlet Allocation with Gaussian modeling, introducing
Gaussian-LDA which directly models each topic as a Gaussian distribution over audio features
(Hu, Liu, Jiang, and Yang 2014). Gaussian-LDA is built on the same principles of a topic model.
It shares the properties of standard LDA but in the last distribution instead of using a multi-
nomial distribution over words it defines a Gaussian distribution for each topic over the audio
feature. Therefore it does not need a vector quantization step like the standard LDA, avoiding
discretization and also integrates the procedure of clustering.
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Figure 2.9: Gaussian LDA Graphical representation (Hu, Liu, Jiang, and Yang 2014).

For the feature extraction the authors normalized the sound files to 16kHz sampling and 16
bit per sample. Then they remove the silence frames with a log energy threshold and only af-
terwards the short-term features are extracted. The authors computed Mel-Frequency Cepstral
Coefficients plus normalized energy and the first derivatives, considering spectral centroid,
spectral flatness, spectral rolloff and zero crossing. The second feature set consisted of concate-
nating 26 dimensional MFCC with 8 dimensional perceptual features.

The authors compute distances between vectors since each audio clip is represented by a
vector. The chosen similarity measure is the cosine distance which measures similarity between
query audio and training audio clips.

In the evaluation all training audio clips are ranked according to distances to query audio,
and the closest k candidates will be retrieved. The evaluation was done with 1214 audio doc-
uments, each associated with a category, randomly selecting 100 documents as query and the
rest of the dataset as training set. The documents are considered similar if their category is the
same as the query. For each query the precision and recall rates are calculated.

The results were compared with standard LDA, a histogram method and GMM as base-
lines. The Gaussian-LDA outperformed the standard LDA topic model regardless of the num-
ber of latent topics (Hu, Liu, Jiang, and Yang 2014). The authors found experimentally the
MFCC feature set provided a higher performance with a 34 dimensional feature instead of a
26 dimensional feature set. Overall, the experimental results showed Gaussian-LDA produces
higher precision and recall rate than the others. The histogram method achieved better results
than GMM and the standard LDA enhanced the performance of histogram when less than 10
most similar samples are retrieved. The authors argue that the discretization of features in
standard LDA affects the performance so Gaussian-LDA has better performance due to avoid-
ing discretization. They also argue that both the histogram method and topic models way of
exploring similarity are beneficial and there is a correlation between them for audio analy-
sis. However, standard LDA just combines two measurements doing nothing about weighting
them. They suggest this is the essential reason why Gaussian-LDA shows a better and more
stable performance. They conclude some limitations from the standard LDA have been inher-
ited, such as the sequence information among short-term features being neglected.

2.2.3.4 Summary

Topic models are Unsupervised techniques where each song is a mixture of topics. These
models can be easily extended, in particular LDA, which is highly modular (Hu 2009). The
number of topics can be unbounded and learnt from data as seen in HDP (Hoffman, Blei, and
Cook 2008).

The main disadvantages are that topics are soft-clusters without any objective metric to tell
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if the choice of hyperparameters is the best and they comprehend a vector quantization step
for discretization. This has been overcome through Gaussian-LDA (Hu, Liu, Jiang, and Yang
2014) but the sequence information among short-term features is still neglected.

In overall terms, we can distinguish between the presented models in two main properties,
if they discretize information and if they are able to maintain the sequential information. The
properties of each model are represented in the following table:

Model Discretized Sequential Information
GMM No Yes
Histogram Yes No
LOWBOW Yes Yes
HDP Yes No
LDA Yes No
Gaussian-LDA No Yes

Table 2.2: Model Discretization and Sequential Information Properties.

As can be seen from table 2.2, GMMs are capable of retaining the sequential information
and do not need to discretize so there is no loss, however this model suffers from hubs (Au-
couturier and Pachet 2002b), (Pachet and Aucouturier 2004), songs which are irrelevantly close
to all other songs and there is a glass-ceiling around 70% precision. Therefore in a query-by-
example scenario this model is not the best.

Histograms (Riley, Heinen, and Ghosh 2008; Grosche, Müller, and Serrà 2012) require a
discretization step where there is a small loss of information and the sequential information is
disregarded but this model presents good results being capable of competing with the GMMs.
The histograms are suitable for a query-by-example scenario if we do not need to take into
account sequential information.

The LOWBOW framework (Lebanon, Mao, and Dillon 2007) extends the histogram model
by retaining the sequential information among the LOWBOW curves. This model still has
not been applied to audio, but the results in the text domain show great prospects and this
framework is suitable in a query-by-example scenario where we need to take into account
sequential information.

The HDP (Hoffman, Blei, and Cook 2008) and LDA (Hu 2009) topic models are both suit-
able for query-by-example scenarios. The main difference is HDP is a generalization of LDA
with the number of topics unbounded and learnt from data. They both inherit the discretization
step from the histograms and present good results, higher than the histogram model.

The Gaussian-LDA topic model (Hu, Liu, Jiang, and Yang 2014) extends the LDA by di-
rectly modeling each topic as a Gaussian distribution bypassing the vector quantization step
avoiding discretization. This model is also suitable for a query-by-example scenario.

The authors of the Gaussian-LDA (Hu, Liu, Jiang, and Yang 2014), argued that both the
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histogram method and topic models way of exploring similarity are beneficial and that there is
a correlation between them for audio analysis.

Taking into account these various models, we consider the most suitable models for our
query-by-example to be LOWBOW and Gaussian-LDA due to their capability of maintaining
sequential information. We consider that for our particular audio matching scenario, sequential
information is of extreme importance. GMM was not considered due to its hubs problem,
which would affect our query-by-example.

In this chapter we discussed the current state-of-the-art for the audio matching task in or-
der to get a better understanding of our task and see what can still be done to improve it. We
presented the typical 3-stage architecture for query-by-example systems where we also showed
some of the most used features and algorithms in audio matching. We then presented three ma-
jor audio modeling approaches: Music retrieval using Gaussian Mixture Model, Histograms,
and Topic models. We finish this section with a comparison table of all the studied systems.



3
Various features with different characteristics suitable to harmonic progression were pre-

viously presented in section 2.1.1. In this chapter we study the feature extraction process and,
from there on, define possible changes and experiment for our task.

We will now begin studying the features of choice. We decided for each feature type to
analyze a small set of songs,in order to try to get a better understanding of the features and
their flaws for audio matching.

We chose three songs for this case study. The original ”River Flows in You” and two cover
songs henceforth ”Coversong 1” and ”Coversong 6”. ”Coversong 6”, is the one most similar in
terms of harmony and structure to ”River Flows in You”, ”Coversong 1” is far less similar.

3.1.1 Chroma Variations

The Chroma variations described and available in the Chroma Toolbox possess the de-
sired characteristics for our audio matching task (Müller and Ewert 2011a; Müller, Kurth, and
Clausen 2005; Müller, Ewert, and Kreuzer 2009). Therefore we studied the Chroma Toolbox and
used the default setup w25 d5 for CENS and n = 55 for CRP, which, according to the authors,
was demonstrated to have good results (Müller and Ewert 2011a; Müller, Kurth, and Clausen
2005; Müller, Ewert, and Kreuzer 2009). Experiments with the described setup are shown in
Figure 3.1 to Figure 3.6.

Taking into account that the Chromagrams 3.5 and 3.1 are quite similar and 3.3 has big
differences which means CENS is a valid choice to detect audio similarity. CRP Chromagrams
showed similar results however we are more interested in CENS because we want to have
audio-word histograms representations that are robust to distortion allowing for an audio seg-
ment and a distorted version to be very similar (Riley, Heinen, and Ghosh 2008; Müller, Kurth,
and Clausen 2005).

3.1.1.1 Vector Quantization

To feed these extracted features to the Query Engine we must first process them with a
vector quantization stage. In this stage we used the k-Means clustering algorithm through the
weka framework with cluster number k = 500. Riley et al. (2008), experimented with several
clustering algorithms besides k-Means and found that most algorithms involved greater com-
putational complexity without improving the VQ and resulting song matching. The authors
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Figure 3.1: River Flows in You - CENS Chromagram

Figure 3.2: River Flows in You - CRP Chromagram
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Figure 3.3: Cover song 1 - CENS Chromagram

Figure 3.4: Cover song 1 - CRP Chromagram
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Figure 3.5: Cover song 6 - CENS Chromagram

Figure 3.6: Cover song 6 - CRP Chromagram
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Figure 3.7: River Flows in You - Chords Plot

also determined experimentally that k = 500 performs successfully (Riley, Heinen, and Ghosh
2008).

The results are k feature descriptors corresponding to the centroids of the clustering, these
feature descriptors act as audio words forming a vocabulary with length k and each feature
vector in a song becomes associated with its closest descriptor. This means for each song there
will be an output audiowords file where the feature vector of instant t is replaced with the
closest audioword.

By representing individual Chroma vectors by the cluster center to which they belong,
we make equivalent in the histogram representation any segments that were musically very
similar but may have had slightly different Chroma vectors.

The audio Query also requires a quantization step where for each feature vector i in the
Query we quantize by finding the best cosine similarity between the feature vector i and all the
audiowords, which results in an output as above of an audiowords file.

3.1.2 Chords

The Harmony Progression Analyzer (HPA) (Ni, McVicar, Santos-Rodriguez, and De Bie
2012) also possesses the desired characteristics for our audio matching task. Therefore we
studied HPA full chord extraction and used the default setup of 11025 Hz sample rate, for
the bass chromagram 55 minimum frequency and maximum frequency of 207, and finally for
the treble chromagram 220 minimum frequency and maximum frequency of 1661. Experiments
with the described setup are shown in Figure 3.7 to Figure 3.9.
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Figure 3.8: Cover song 1 - Chords Plot

Figure 3.9: Cover song 6 - Chords Plot
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Taking into account that the Chords Plots 3.9 and 3.7 are similar, although 3.9 has the chord
sequence with a slower tempo, and 3.3 has larger differences, it is possible to conclude that HPA
is a valid choice to detect harmonic similarity for our task.

In table 3.1 we compare the main characteristics that distinguish CENS and Chords.

Features Representation Sparsity Phrasing Similarity
CENS Low-level High Medium
Chords High-level Low High

Table 3.1: Feature Characteristics Comparison.

The Vector Quantization required for the CENS features leads to many similarity mis-
matches in phrasing since musically different vectors are grouped in the same cluster. Thinking
of it in terms of chords it means, for example, a C7 chord was considered the same as CMaj.
Therefore the usage of CENS or CRP is not a valid option for our system, as we are interested
in possessing the capability to distinguish between chords.

The chord extraction through the HPA is quite robust, although some chords might be
wrongly classified. This represents just a small influence in our phrasing similarity as opposed
to CENS or CRP. Additionally, using chords provides a high-level representation closely corre-
lated to the harmonic progression.

In this chapter we studied the features presented in section 2.1.1 in order to get a better
understanding of their suitability towards our task and grasp their advantages and disadvan-
tages. We present our rationale and finish this section with a comparison table of the studied
features.
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4
The purpose of this chapter is to study some of the previously obtained results in order

to construct an audio matching query-by-example system. We took into account the feature
study performed and from there we define the stages of our query-by-example system. The
full architecture of our query-by-example system is detailed in 4.1. In order to validate and
verify the improvement of our system we define a suitable baseline for our task. Then we
evaluate our query-by-example system and compare it against the bag-of-words baseline while
showing the results and posterior conclusions we took. Afterwards we show the application of
our query-by-example system to a cover song detection task.

A baseline, generically speaking, is a measurement of some sort used as a basis for com-
parison. If we want to validate, study and improve previous work, one possible way of doing
this is to have a basis for comparison, a baseline. Regarding this thesis, we decided to use a
baseline for numerous reasons. The first reason is we are adapting an already existing tech-
nique in text to the audio domain. Creating a complex system from scratch would prove very
troublesome due to its complexity. The second reason relates to the study and experimentation
of the system: this means we wanted a fully functional system in order to test, study and pos-
sibly improve it. Another important aspect regarding baseline study is the ability to reproduce
the baseline results.

4.1.1 Bag-of-Words

The audio matching task poses a concern in finding a good baseline because in the liter-
ature we could not find any available dataset for audio matching purposes to be used. The
authors tend to create their own datasets.

We decided to replicate an audio Bag-of-words approach similar to the one proposed by
(Riley, Heinen, and Ghosh 2008). The motive to replicate the audio Bag-of-words approach
is that we use the lowbow framework which extends bag-of-words by locally weighting the
terms with temporal smoothing. Given their similarities and the possibility to also use lowbow
as a bag-of-words, by altering a parameter, we can efficiently use bag-of-words in lowbow as a
baseline and assert our findings of using a locally weighted bag-of-words instead of a typical
bag-of-words.

Due to the unavailability of audio matching datasets we decided to use our own datasets
and experiment audio matching in two contexts, with a short-query dataset and covers dataset.
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Taking into account the results from our feature study in Chapter 3, we used Harmony
Progression Analyzer for our feature extraction since we want robustness and high level corre-
lation with the harmonic progression.

Following our discussion in section 2.3 of the models used in the related work and the dif-
ferent properties they possessed, we chose the lowbow framework as our query engine because
of its novelty in the audio domain and also being capable of retaining sequential information
which makes it suitable for our query by example system since it will allow the capture of
trends in tempo, articulation and phrasing.

We adopted the lowbow framework by implementing it in C++. This framework extends
the bag-of-words by performing temporal smoothing where for each time instant the words are
locally weighted, effectively becoming a locally weighted bag-of-words and capturing sequen-
tial information, such as local trends whereas the bag-of-words is not capable of doing since it
is orderless.

Our audio lowbow framework has the following definitions:

Definition 1 A song x of length N is a function x : 1, ..., N ⇥ V ! [0, 1] such that
P

j2V x(i, j) = 1 8i 2 1, ..., N.

The set of songs (of all lengths) is denoted by X .

For a song x 2 X the value x(i, j) represents the weight of the audio word j 2 V
at location i. Since the weights sum to one at any location we can consider Definition 1 as
providing a local audio word histogram or distribution associated with each song position.
The standard way to represent an audio word sequence as a song in X is to have each location
host the appropriate single audio word with constant weight, which corresponds to the �c
representation defined below with c = 0.

Definition 2 the standard representation �c(y) 2 X , where c � 0, of an audio word sequence y =
hy1, ..., yN i

�c(y)(i, j) =

(
c

1+c|V | yi 6= j
1+c

1+c|V | yi = j
. (4.1)

Equation 4.1 is consistent with Definition 1 since
P

j2V �c(y)(i, j) = 1+c|V |
1+c|V | = 1. The

parameter c in the above definition injects categorical smoothing to avoid zero counts in the �c,
representation.

Definition 1 lets several audio words occupy the same location by smoothing the influence
of audio words yj across different song positions. Doing so is central in converting the discrete-
time standard representation to a continuous representation that is much more convenient for
modeling and analysis.
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Definition 1 is problematic since according to it, two songs of different lengths are consid-
ered as fundamentally different objects. To allow a unified treatment and comparison of songs
of arbitrary lengths we map the set 1, ..., N to a continuous canonical interval, which we chose
to be [0, 1].

Definition 3 A length-normalized song x is a function x : [0, 1]⇥ V ! [0, 1] such that
P

j2V x(t, j) = 1, 8t 2 [0, 1].

The set of length-normalized songs is denoted X 0

A simple way of converting a song x 2 X to a length-normalized song x0 2 X 0 is expressed
by the length-normalization function defined below.

Definition 4 The length-normalization of a song x 2 X to a length-normalized song x0 2 X 0 is the
mapping

' : X ! X 0 '(x)(t, j) = x(dtNe , j)

where dre is the smallest integer greater than or equal to r.

The length-normalization process abstracts away from the actual song length and focuses
on the sequential variations within the song relative to its length. In other words, we treat two
songs with similar sequential contents but different lengths in a similar fashion. For example
the two songs hy1, y2, ..., yN i and hy1, y1, y2, y2..., yN , yN i would be mapped to the same
length-normalized representation.

We formally define bag-of-audio-words as the integral of length-normalized songs with
respect to time. This definition is equivalent to the popular definition of the traditional bag-of-
words.

Definition 5 The bag-of-audio-words or boaw representation of a song y is ⇢('(�c(y))) defined by

⇢ : X 0 ! PV�1where[⇢(x)]j =
Z 1

0
x(t, j)dt, (4.2)

and [·]j denotes the j-th component of a vector.

Above, PV�1 stands for the multinomial simplex.

Definition 6 The locally weighted bag-of-audio-words or lowbow representation of the audio word se-
quence y is �(y) = �µ 2 [0, 1] where �µ(y) 2 PV�1 is the local audio word histogram at µ defined
by

[�µ(y)]j =

Z 1

0
'(�c(y))(t, j)Kµ,�(t)dt. (4.3)
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Equation 4.3 indeed associates a song location with a local histogram or a point in the
simplex PV�1 since

P
j2V [�µ(y)]j =

P
j2V

R 1
0 '(�c(y))(t, j)Kµ,�(t)dt =

R 1
0 Kµ,�(t)

P
j2V '(�c(y))(t, j)dt =

R 1
0 Kµ,�(t) · 1dt = 1.

The Simplex of the lowbow framework is initialized with the obtained vocabulary from
the HPA chords. Query and database songs received are initialized as smooth curves through
the corresponding audiowords file receiving categorical and temporal smoothing.

The temporal smoothing in our framework is done through the Gaussian probability den-
sity function (pdf) restricted to [0,1] and renormalized:

Kµ,�(x) =

8
<

:

N(x;µ,�)

�((1� µ)/�)� �(�µ/�)
x 2 [0, 1]

0 x /2 [0, 1]
(4.4)

where N(x;µ,�) is the Gaussian pdf with mean µ and variance �2 and � is the cumulative
distribution function (cdf) of N(x; 0, 1).

The primary reason behind choosing our audio matching algorithm is in regards to what
similarity we want to tolerate. As stated previously we are interested in tempo, phrasing and
articulation so chord length deviations and insertions/removals are considered. Secondly, it
has to be easily adaptable to our subsequence matching algorithm. Thirdly, the time constraint,
although it is not the focus of this thesis, we want to obtain an efficient query-by-example
system.

Comparing all of the state-of-the-art algorithms presented in section 2.1.3 the constrained
DTW (cDTW) is the best for our system. It captures the similarities in tempo, phrasing and
articulation. It also is easily adaptable to subsequence matching, such is the case of SPRING.
Additionally it has a better performance than the other algorithms.

We adapted cDTW for our task by using sink states as explained in the SPRING algorithm.
We allow the match of a query to start at any point between the start and end of the music
being compared while also allowing the match of a query to end at any point between the start
and end of the music being compared. We also set a threshold of distance equal to 1 in order
to exclude resulting sequences of higher distance which deviate from our query in order to be
in accordance with our task. With these changes we effectively solve the query to subsequence
problem of our task. We are able to compare between queries and full songs using cDTW to
capture the similarities in tempo, phrasing and articulation.

As mentioned before in section 3.1.2, we applied the same settings specified for our feature
extraction with Harmony Progression Analyzer, respectively 11025Hz sample rate, 55 mini-
mum frequency and maximum of 207 for the bass chromagram and 220 minimum frequency
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Figure 4.1: Architecture of our Query-by-Example system.
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Figure 4.2: Hitting ratio comparison between Lowbow and Bow.

and maximum of 1661 for the treble chromagram. For our modeling using locally weighted
bag-of-words we chose for our sigma � = e�3, a smoothing coefficient of e�2 and the sam-
pling was done with a 1.0 ratio (Lebanon, Mao, and Dillon 2007).

The dataset is comprised of 700 noise songs and 25 popular guitar songs from various
genres, such as blues, rock, metal, etc. For each song we extracted four short length queries
between 10 to 15 seconds resulting in 100 queries.

The experiment consisted of running each query against our query-by-example system and
retrieving the respective song from which we extracted the short query. The experimental setup
was previously described in section 4.5.

The main purpose of this experiment was to validate our query-by-example system while
also demonstrating that lowbow retains sequential information being leveraged in our system.

The metrics used to assess our performance were:

- Hitting ratio Top(N) = Hit(N)
Total .

- Mean Reciprocal Rank MRR = 1
n

Pn
i=1

1
Rank(i) .

These metrics are also used by the MIREX community for query-by-humming systems
considered as standard metrics for query system performance evaluation.

The results are shown in detail in Figure 4.2.

4.6.1 Query Results

As we can see in Figure 4.2, our query-by-example system using lowbow is capable of
achieving hitting ratios similar to MIREX’s query-by-humming state of the art, a MIREX 2010
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submission.

Assessing the results from our task point of view, of retrieving songs where we can play
the submitted query. We found that the songs, between the first rank and our target song from
which we extracted the query, had higher similarity due to lowbow’s smoothing. By removing
the smoothing process we observed all these songs had the same DTW distance, respectively 0.

The smoothed curves affect the local points in a way that the musical trends near that point
are also retained. For example, a song which repeats the query sequence often, means the trend
at the obtained subsequence is highly correlated with the original query whereas a song that
has the original query but then shifts to a completely different theme does not.

Model Mean Reciprocal Rank
Bow 0,03
Lowbow 0,756
Mirex 2010 0,947

Table 4.1: Mean Reciprocal Rank comparison.

In Table 4.1 the MIREX 2010 submission of the query-by-humming state of the art outper-
forms our system, although in the top 10 hitting ratio we have higher accuracy. This result
directly translates to the reasoning that for short queries with popular chord sequences it is
hard to find at rank 1 the song you are expecting since there are plenty of songs with that
popular chord subsequence. In section 5.1 we talk about a possible solution to this problem.

4.6.2 Baseline Comparison

In terms of our bow baseline comparison, for our matching problem, bow is not capable of
finding target songs for our task, as it only has a Mean Reciprocal Rank of 3%.

The lowbow greatly outperforms the bag-of-words baseline. This result can be explained
by the sequential information being captured in lowbow which provides excellent results in
our query to subsequence matching problem.

The cover song dataset is comprised of 700 noise songs, 30 original songs, each one with
10 respective cover songs.

The experiment consisted of running each original song against our query-by-example sys-
tem and retrieving the respective cover songs. The experimental setup was previously de-
scribed in section 4.5, however in this experiment we did not use the constraints, therefore
allowing cDTW to start and end at any point since we are using full songs.

The results are shown in detail in Figures 4.3, 4.4, 4.5 and a Table 4.2 of the classification
tendencies of bow and lowbow.
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Figure 4.3: Cover Songs Accuracy Comparative Evaluation.

Figure 4.4: Overall Classification Tendencies of Lowbow.
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Figure 4.5: Overall Classification Tendencies of Bow

Model Always Correctly Classified Always Misclassified Others
Bow 10% 40% 50%
Lowbow 50% 10% 40%

Table 4.2: Classification Tendencies Lowbow vs Bow

4.7.1 Cover Song Results

As we can see in Figure 4.3, our query-by-example system using lowbow is capable of
detecting cover songs to a certain degree. In accordance with our system characteristics, Figure
4.4 shows that our system is capable of correctly identifying cover songs which are based on
the original song harmonic sequence, whereas cover songs based on melody or rhythm have
more harmonic differences.

4.7.2 Baseline Comparison

Assessing the results against our bow baseline, we see that for cover song detection bow is
a valid choice for cover songs such as studio to live versions without large harmonic differences
as it had already been applied to in related work in chapter 2.

Lowbow greatly outperforms the baseline as it is capable of extending the range of iden-
tified cover songs. This result is clearly noticed by looking at Table 4.2. These results can be
explained again by the sequential information being captured which allows us to tolerate de-
viances in the harmonic sequence whereas the bag-of-words only takes into account the global
harmony without any order.
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In this chapter we presented and defined our baseline as being the traditional bag-of-words
approach. We also defined our 3-stage architecture query-by-example system where we also
showed adjustments made towards our task, such as in audio matching the query to subse-
quence adjustment. For the feature extraction the HPA is used. The lowbow framework will
serve as our query engine. Finally the audio matching will be done with an adapted version of
cDTW.

We showed our query-by-example system achieves good results against our baseline and
is suitable for our task.

The sequential information captured in lowbow proves to be a major factor for the suc-
cess of our proposed task since it allows both the capability of identifying similar harmonic
sequences and provides a higher differentiation between songs that have the same harmonic
sequence with different trends before and/or after the sequence.

We also achieved good results in the cover song task. We can conclude that lowbow is
suitable for identifying cover songs relying on harmony.



5
We started this work with a goal to create a robust and adaptable query by example system

for audio matching. We decided to focus on the lowbow framework and on audio bag-of-words
in order to obtain a baseline to enhance our knowledge of the lowbow framework.

After an extensive study we conclude that our query-by-example system successfully ad-
dresses our task of finding thematically similar songs allowing the user to play the query to be
submitted and that our system can also be used for certain cover songs detection.

We believe that the future of audio matching will pass by a mixture of sequential infor-
mation with some symbolic data or supervised learning. The reasoning behind our belief is
that audio similarity requires a deeper connection between the sequential information and the
musical context in which the sequence occurs. Knowing if we are in the presence of a chorus
or a verse will help in improving audio matching and enhance the knowledge obtained from
sequential information. With the added information we believe audio matching can grow to
something bigger and become capable of relating an original with its cover songs with high
precision.

5.1.1 Goals Discussion

For our particular problem of audio matching in a query-by-example scenario two major
objectives must be fulfilled: firstly, a way to evaluate the problem; and secondly, an algorithm
to solve it.

Regarding this thesis, we had some difficulties in solving the first problem since audio
matching has some inherent subjectivity and there were no available audio matching datasets.
Our solution was to validate short queries by creating our own audio matching dataset and
also by applying our query-by-example system to the closest audio similarity tasks, cover song
detection. The second problem was also one of this thesis goals: the creation of an audio match-
ing query by example system. We solved this problem by using the lowbow framework and
studying related work to define an audio bag-of-words baseline from it.

We believe that changing our lowbow framework to capture local contexts, such as song
chorus, verses, among others, to be of high value towards improving our system. With these
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labels users can explicitly tag queries to be of a particular context, e.g. chorus. Afterwards our
system would compare that particular query only to chorus sections.
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