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Abstract—Modeling data is central to all machine learning
tasks. Many approaches operate in batch mode, and require
data to be fully available a priori. However, on some domains,
we may want to continuously build and update a model as
more data arrives. On big data domains the data may not even
fit entirely in memory, making batch approaches inadequate.
Online approaches are more suitable for these tasks as they
do not require data to be available a priori. Some go further,
and do not need to store all previously observed samples. In
this thesis, we describe and implement a state of the art online
kernel density estimation approach, that allows to continuously
model data points by building and maintaining a Gaussian
mixture model of the data. Our implementation, which we called
xokde++, is also designed to handle high dimensionality and
arbitrary data distributions, such as degenerate and skewed
data. Furthermore the code is extensible and easy to integrate
in larger projects. Comparing to the current state of the art,
our implementation is up to 40 times faster, needs 90% less
memory, has greater numerical robustness, and produces, on
average, models with higher quality. To show extensibility and
further improve numerical stability we also implement a variant
of xokde++ that replaces the full covariance Gaussian kernels by
diagonal covariance ones, with positive results on both numerical
robustness and computational performance.

I. INTRODUCTION

The ability to model data is central to all machine learning
tasks. In most tasks. data is available beforehand as a training
set, and performance is evaluated in a separate test set.
However, sometimes such as in big data applications, data does
not fit in memory or is not completely available beforehand.
In a more extreme scenarios the data may change over time,
and thus is desirable to build and maintain a model of current
and past data, but capable of some degree of forgetfulness.
This is critical in long running applications where we want
continuously receive and model data for months or years.

Keeping all observed data samples and retraining the whole
model at each update, or even periodically is computationally
unfeasible and wasteful. A better approach is to keep a simpli-
fied model of the data where similar data samples are grouped
together and represented by a single entity. Gaussian mixture
models (GMM) are especially useful for this task as they
provide a generative model of data. Grouping together several
observations under a single Gaussian component avoids having
to keep all previously observed samples, needing only to keep
the Gaussian component parameters. One approach to train
GMMs is to use the Expectation Maximization algorithm [1]
(EM). However, this approach suffers two caveats. First the
number of Gaussian components must be defined a priori,

which limits applicability in long term modeling. Plus, it
suffers from initialization issues where an improper choice
may lead to poor models unable to capture the complete
structure of the underlying pdf. This is typically solved by
using training data to find the best initialization [2]. However,
in some scenarios no training set is available. And even if a
training set is available, data may change over time, making the
initial initialization, optimal for the original data, sub optimal
for the current data. Finally, although incremental versions of
EM exist [3], they still need to keep parts of the previously
observed data and to define, a priori, the target number of
components.

We define our setup to be one where the data to be modeled
is not known a priori, and where the shape of the target
distribution changes over time. Since we assume no training
information is available in our scenario, we avoid assuming
anything about the data nature, feature length, and underlying
distribution. We also want to continuously update the model in
long operation times while keeping the current model updated
and ready to use. Since memory is finite, having a machine
permanently capturing and processing data samples makes
saving all previously observed samples a computationally
unfeasible approach. Furthermore, since the goal is to model
data through months or years, we want our model to be able to
evolve as new data appears while making older data, possibly
obsolete, progressively less important.

Kernel density estimation methods are nonparametric ap-
proaches that do not require any prior definition of the number
of components, thus avoiding the initialization problem of EM.
The drawback is that each observation is represented as single
component in the mixture. This implies that the complexity
grows linearly with the number of observed data. A solution
for this is to compress the model either to a predefined number
of components [4] or to optimize some data-driven choice [5].
Ozertem et al. [6] have a different approach in which the model
compression is viewed as a clustering problem. Adapting
kernel density estimation methods to online operation instead
of batch is a non trivial task. The main difficulty lies in
maintaining sufficient information of the estimated models to
properly generalize to unobserved data and to adjust model
complexity and parameters without directly accessing all pre-
viously observed samples. Han et al. [7] proposed an online
approach based on mean-shift mode finding, and in which each
new sample is added to the model as a Gaussian component.
However this approach is sensitive to non-Gaussian areas
due to skewed or heavy tailed data. Declercq and Piater [8]
propose a two level approach where the key idea is that



each component of the (non-overfitting) mixture is in turn
represented by an underlying mixture that represents data
very precisely (possibly overfitting). This allows the model
to be refined without sacrificing accuracy, as a merge in the
upper level can later be accurately split. They also tackle the
problem of non-Gaussian data by using a uniform distribution
to represent regions where data is non-Gaussian.

Kristan et al [9], [10] recently proposed a nonparametric
approach called online kernel density estimator (oKDE). This
approach does not attempt to build a model of the target dis-
tribution directly. Rather, it maintains a nonparametric model
of the data itself as mixture of Gaussian and Dirac-delta
functions called sample distribution. This model is then used to
compute the kernel density estimate of the target distribution.
This separation is particularly useful in our setup, where the
target distribution may change over time. Furthermore, being
online, the model can be updated in single sample updates,
as each new sample is simply a Dirac-delta function. To keep
complexity low, the model is compressed from time to time
using hierarchical clustering, which approximates clusters of
components by single Gaussians. This approach allows to
model multivariate data while making little assumptions on
data nature. More importantly, it contains a forgetting factor,
where old information progressively loses weight in the model.
This allows to continuously model and adapt to new infor-
mation even where the target distribution changes over time.
Furthermore, this approach does not need to keep all previously
observed samples, as it compresses similar observations under
a single Gaussian. However if the target distribution changes
sufficiently this merges may be no longer valid. To retain
ability to later split these compressions, each component has
an underlying model that provides sufficient information for
a split. All these properties make this an appealing approach
for a long running application with high dimensional sets of
features such as face recognition.

As stated, we want to be able to keep and maintain a model
learning in permanent operation. However, we also want to
keep it permanently available to use with the most up to date
state possible. This means that there is a need for compu-
tational speed component in our requirement. Unfortunately,
the existing code for the oKDE implementation is MATLAB
research code and is not optimized for speed. Furthermore, it
is also not designed to handle very high dimensionality such
as 1000 or 5000 dimensions, failing to fulfill the previous
requirement of handling arbitrary feature length and structure.

Our work closely follows the approach described by Kris-
tan et al [9], [10] and consists in an equivalent but faster
and more robust version of the original oKDE. Implemented
in C++, an efficient object oriented programing language, it
also aims at flexibility and extensibility, thus easing the effort
in exploring alternative lines of work in search of further
improvements to the online estimation of kernel densities. The
goal is to produce a fast, responsive and accurate, generic data
modeling tool that is sufficiently robust to handle permanent
operation through very long periods of time.

The following sections start by describing the original on-
line kernel density estimation (Section II) method, we then de-
scribe our contributions to the original approach (Section III).
The evaluation setup (Section IV) is presented next, followed
by results (Section V), before concluding (Section VI).

II. ONLINE KERNEL DENSITY ESTIMATION

The state of the art work on online kernel density estima-
tion presented before, was not specifically developed with high
dimensionality in mind. Since the model is based on the mul-
tivariate Gaussian distribution then, by definition, it allows an
arbitrary number of dimensions. But computational complexity
and memory requirement scale quadratically with the number
of dimensions, which makes this approach computationally
prohibitive very fast. Plus, even if time and memory resources
are available, numerical problems may arise due to overflows,
underflows and precision issues. The original authors provide
a MATLAB implementation, but it suffers from memory and
computational inefficiencies, which are exacerbated as the
number of dimensions grow, and would severely limit the
dimensionality we would be able to work. Due to this, we fully
reimplemented the oKDE approach [9] in C++. In the process,
we also took into consideration the high dimensionality setup
by avoiding, where possible, numerical instability prone oper-
ations. In the next subsections we will describe the theoretical
background of the implemented approach, and implementation
bound decisions are described where appropriate.

A. Model Definition

We define the sample model as a d-dimensional, N -
component Gaussian mixture model.

ps(x) =
NX

i=1

wi�⌃i(x � xi) (1)

where x is a D-dimensional data vector (i.e., the observation
features), wi are the mixture weights, and g(x|µi,⌃i), are
the component Gaussian pdfs. Each component is a D-variate
Gaussian probability density function of the form,

�⌃i(x�µi) =
1
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exp
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(2)
with mean vector µi and covariance matrix ⌃i. Also, the sum
of the mixture weights is constrained such that ⌃N

i=1wi = 1.

To maintain a low complexity during online operation, we
compress the sample distribution when certain criteria is met.
However, as stated before, a valid compression now, may later
prove to be invalid. To detect and recover from these over-
compressions we keep an additional model of data for each
component of the mixture. Our model of the observed samples
is therefore defined as:

Smodel = {ps(x), {qi(x)}i=1:N} (3)

where ps(x) is the sample distribution and qi(x) is a mixture
model (with at most two components) for the i-th component
in ps(x).

The kernel density estimate (KDE) is defined as a convolu-
tion of ps(x) by a kernel with a covariance matrix (bandwidth)
H:

p̂KDE(x) = �H(x) ⇤ ps(x) =
MX

i=1

wi�H+⌃i(x � xi) (4)



B. Optimal Bandwidth

The goal of all KDE methods is to determine the kernel
bandwidth H such that the distance between the p̂KDE(x) and
the unknown pdf p(x) that generated the data, is minimized.
If we assume that the structure of F is known and rewrite the
bandwidth matrix in terms of scale � and structure F, we have

H = �2F (5)

such that the finding the optimal bandwidth is equivalent to
finding the optimal scaling

�opt = [d(4⇡)d/2NR(p, F )]

�1/(d+4) (6)

where the term R(p, F ) can be approximated by ˆR(p, F,G)

ˆR(p, F,G) =

NX

i=1

NX

j=1

wiwj�A�1
ij
(�ij)

⇥
h
[2tr(F 2A2

ij)][1� 2mij ] + tr2(FAij)[1�mij ]
2
i

(7)

For reading simplicity, we used the following definitions:

Aij = (⌃gj + ⌃sj)
�1, �ij = µi � µj ,

mij = �

T
ijAij�ij (8)

In addition, ⌃gj is defined as

⌃gj = G + ⌃sj (9)

where ⌃sj is the covariance of the j’th component of ps(x).
The term G is the pilot bandwidth, which is estimated by a
multivariate normal-scale rule of the distributions derivative

G =

ˆ

⌃smp

✓
4

(d+ 2)N

◆2/(d+4)

(10)

where ˆ

⌃smp is the covariance of the approximation of the
entire model by a single Gaussian.

Resorting to the practical assumption that the structure
of the bandwidth H can be reasonably well approximated
by the structure of the covariance matrix of the observed
samples [11], [12], then F =

ˆ

⌃smp. Note that, if data has been
spherized [13] the bandwidth structure F will correspond to
the identity matrix, I , and F could simply be removed.

C. Model Compression

If samples are simply added without doing anything else,
model complexity would increase linearly with the number of
samples. This would be the same as saying that we save all
previously observed samples, which defeats one of our initial
goals.

One way to solve this problem is to compress the sample
model when a certain threshold is met. The objective of the
compression to approximate the original N -component sample
distribution

ps(x) =
NX

i=1

wi�⌃i(x � xi) (11)

by a M -component, M < N , equivalent p̂s(x)

p̂s(x) =
MX

j=1

ŵj�⌃̂j
(x � ˆxj) (12)

such that the resulting compressed KDE does not change sig-
nificantly. This means that we are representing approximately
same information using less components while and minimizing
the induced error.

One way to compress the sample model is to resort to
a clustering-based approach. The aim is to identify clusters
of components in ps(x) such that each cluster can be suffi-
ciently well approximated by a single component in p̂s(x).
Let ⌅(M) = {⇡j}j=1:M be a collection of disjoint sets of
indexes, which cluster ps(x) into M -sub-mixtures. The sub-
mixture corresponding to indexes i 2 ⇡j is defined as

ps(x;⇡j) =

X

i2⇡j

wi�⌃i(x � xi) (13)

The parameters of the j-th component ŵj�⌃̂j
(x � µ̂j) are de-

fined by matching the first two moments (mean and covariance)
of the sub-mixture ⇡j

ŵj =

X

i2⇡j

wi,

µ̂j = ŵj
�1

X

i2⇡j

wiµi, (14)
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In fig. 1 an example is provided where the components of
a sample distribution ps(x) are clustered to form another
(compressed) sample distribution p̂s(x). The KDEs of the
original and compressed KDE are also depicted, showing that
while the number of components in the sample distribution is
reduced, the resulting KDE does not change significantly.

and is approximated by the j-th component ŵjfR̂sj
ðx"l̂jÞ of p̂sðxÞ.

The parameters of the j-th component are defined by matching
the first two moments (mean and covariance) [29] of the
sub-mixture:

ŵj ¼
X

iApðjÞ

wi, l̂j ¼ ŵ"1
j

X

iApðjÞ

wil̂ i,

Ŝj ¼ ŵ"1
j

X

iApðjÞ

wiðRiþlil
T
i Þ"l̂jl̂

T
j : ð17Þ

For better understanding, we illustrate in Fig. 2 an example in
which components of a sample distribution psðxÞ are clustered to
form another (compressed) sample distribution p̂sðxÞ with a
smaller number of components. We also show the KDEs corre-
sponding to the original and the compressed KDE. While the
number of components in the sample distribution is reduced, the
resulting KDE does not change significantly.

As indicated in Fig. 2 the compression seeks to identify the
clustering assignment XðMÞ, along with the minimal number of
clusters M, such that the error induced by each cluster is sufficiently
low, i.e., it does not exceed a prescribed threshold Dth,

M̂ ¼ argmin
M

EðXðMÞÞ s:t: EðXðM̂ÞÞrDth, ð18Þ

where we define EðXðMÞÞ as the largest local clustering error
Êðpsðx;pjÞ,HoptÞ under the clustering assignment XðMÞ,

EðXðMÞÞ ¼ max
pj AXðMÞ

Êðpsðx;pjÞ,HoptÞ: ð19Þ

The local clustering error Êðpsðx;pjÞ,HoptÞ tells us the error induced
under the KDE with bandwidth Hopt, if the cluster psðx;pjÞ is
approximated by a single Gaussian. We define this error next.

4.1. The local clustering error

Let Hopt be the current estimated bandwidth, and let p1ðxÞ ¼
psðx;pjÞ be a cluster, a sub-mixture of the sample distribution
defined by (16), which we want to approximate with a single
Gaussian p0ðxÞ according to (17). We define the local clustering
error as the distance

Êðp1ðxÞ,HoptÞ ¼Dðp1KDEðxÞ,p0KDEðxÞÞ, ð20Þ

between the corresponding KDEs

p1KDEðxÞ ¼ p1ðxÞ&fHopt
ðxÞ,

p0KDEðxÞ ¼ p0ðxÞ&fHopt
ðxÞ:

In particular, we can quantify the distance between distributions
using the Hellinger distance [30], which is defined as

D2ðp1KDEðxÞ,p0KDEðxÞÞ9
1
2

Z
ðp1KDEðxÞ1=2"p0KDEðxÞ1=2Þ2 dx: ð21Þ

Note that while the Hellinger distance is a proper metric between
distributions and is bounded to interval [0,1] (see, e.g., [30]), it
cannot be calculated analytically for the mixture models. We
therefore calculate its approximation using the unscented trans-
form [31] (see Appendix A).

4.2. Compression by hierarchical error minimization

In principle, the global optimization of (18) would require
evaluation of all possible cluster assignments XðMÞ for the number
of clusters M ranging from one to N, which becomes quickly
computationally prohibitive. A significant reduction in complexity
of the search can be obtained by a hierarchical approach to cluster
discovery. Similar approaches have been previously successfully
applied for a controlled data compression with the Gaussian mixture
models to a predefined number of clusters [16,32].

In our implementation, the hierarchical clustering proceeds as
follows. We start by splitting the entire sample distribution psðxÞ
into two sub-mixtures using Goldberger’s [16] K-means algorithm
for mixture models2 with K¼2. Each sub-mixture is approximated
by a single Gaussian and the sub-mixture which yields the largest
local error Êðpsðx;pjÞ,HoptÞ is further splitted into two sub-mixtures.
This process is recursively continued until the largest local error is
sufficiently small and the condition EðXðMÞÞrDth in (18) fulfilled.
This approach generates a binary tree with M̂ leafs among the
components of the sample distribution psðxÞ, in which the leafs of
the tree represent the clustering assignments XðM̂Þ ¼ fpjgj ¼ 1:M .
Once the clustering XðM̂Þ is found, the compressed sample distribu-
tion p̂sðxÞ (15) is calculated using (16) and (17).

Recall that we keep track of a detailed model for each component
in the sample distribution (see, e.g., Fig. 1b). The detailed model
q̂jðxÞ of the j-th component in the compressed model p̂sðxÞ is
calculated as follows. If the set pj contains only a single index, i.e.,
pj ¼ fig, then the j-th component of the compressed sample
distribution is equal to the i-th component in the original sample
distribution and therefore the detailed model remains unchanged,
i.e., q̂jðxÞ ¼ qiðxÞ. On the other hand, if pj contains multiple indexes,
then the detailed models corresponding to these indexes are first
concatenated into a single extended mixture model

q̂jextðxÞ ¼
X

iApj

qiðxÞ: ð22Þ

Then the required two-component detailed model q̂jðxÞ is generated
by splitting q̂jextðxÞ into two sub-mixtures again using Goldberger’s
K-means and each sub-mixture is approximated by a single Gaussian
using (17). Note that the detailed model is constrained to at most two
components, since this is the least complex model which enables
detection of the early over-compressions as discussed next.

4.3. Revitalizing the sample distribution

The compression identifies and compresses those clusters of
components whose compression does not introduce a significant
error into the KDE with the bandwidth Hopt estimated at the time
of compression. However, during online operation, new samples

Fig. 2. The images illustrate a compression of a four-component sample distribu-
tion psðxÞ into a three-component counterpart p̂sðxÞ using the clustering assign-
ment Xð3Þ ¼ fpjgj ¼ 1:3. The left and right columns show the sample distribution
(upper row) and the corresponding KDE (lower row) before and after compression,
respectively.

2 Note that to avoid the singularities associated with the components in the
sample distribution with zero covariance, the K-means algorithm for the Gaussian
mixtures is carried out on the corresponding KDE.

M. Kristan et al. / Pattern Recognition 44 (2011) 2630–2642 2633

Fig. 1. Example of the compression of a four component sample distribution
into a three component one. The upper row shows the sample distribution,
and the lower one the corresponding KDE. Image taken from [9].

More formally, the compression seeks to identify the clus-
tering assignment ⌅(M) with the minimal number of clusters
M , such that the error induced by each cluster is sufficiently
low, i.e. , it does not exceed a predefined threshold Dth

ˆM = argmin

M
E(⌅(M)) s.t. E(⌅(

ˆM))  Dth (15)

where E(⌅(M)) is defined as the largest local clustering error
ˆE(ps(x;⇡j),Hopt) under the clustering assignment ⌅(M)

E(⌅(M)) = max

⇡j2 ⌅(M)

ˆE(ps(x;⇡j),Hopt) (16)



The local clustering error ˆE(ps(x;⇡j),Hopt) corresponds to
the error induced under the KDE with bandwidth Hopt if the
cluster ps(x;⇡j) is approximated by a single Gaussian. This
error is defined next.

D. Local Clustering Error

Let us define p1(x) as a cluster, i.e., a sub-mixture of the
sample distribution, as shown in eq(13). Also, consider p0(x)
to be the resulting single Gaussian approximation described
in 14. And finally, let Hopt to be the current estimation of the
optimal bandwidth. We can define the local clustering error as
the distance

ˆE(p1(x),Hopt) = D(p1KDE(x), p0KDE(x)) (17)

between the corresponding KDEs

p1KDE(x) = p1(x) ⇤ �Hopt(x)
p0KDE(x) = p0(x) ⇤ �Hopt(x)

(18)

One way to quantify the distance between distributions is using
the Hellinger distance [14], which is defined as

D2
(p1KDE(x), p0KDE(x)) ,

1
2

R ⇣
p1KDE(x)1/2 � p0KDE(x)1/2

⌘2
dx

(19)

E. Distance between Mixture Models

While the Hellinger distance is a proper metric between
distributions and is bounded to the interval [0, 1], it cannot
be calculated analytically for mixture models. We calculate its
approximation using the unscented transform [15], a special
case of the Gaussian quadrature, which, similarly to Monte
Carlo integration, relies on evaluating integrals using carefully
placed points, called sigma points, over the support of the
integral. As in Monte Carlo integration [16], an importance
distribution is defined,

p0(x) = �(p1(x) + p2(x)) (20)

which contains the support of both p1(x) and p2(x), with �
set such that

R
p0(x)dx=1. We can then rewrite the Hellinger

distance (19) into

D2
(p1, p2) =

1

2

Z
g(x)p0(x)dx (21)

where

g(x) =

⇣p
p1(x)�

p
p2(x)

⌘2

p0(x)
(22)

Note that the integral in 21 is an expectation over a nonlin-
early transformed Gaussian random variable x, and therefore
admit to the unscented transform. According to [15] we can
approximate D2

(p1, p2) with

D2
(p1, p2) ⇡

1

2

NX

i=1

wi

2d+1X

j=0

g((j)Xi)
(j)Wi (23)

where {(j)Xi,(j) Wi}j=0:2d+1 are weighted sets of sigma
points corresponding to the i-th Gaussian �⌃i(x � xi), and

are defined as

(0)Xi = xi, (0)Wi =
k

d+ k
(j)Xi = xi + sj

q
(d+ k)⇠j ,

(j)Wi =
1

2(d+ k)

sj =

⇢
1, j  d
�1, otherwise

(24)

where k = max([0,m � d]) and ⇠j is the j-th column of the
matrix square root of ⌃i such that ⇠ =

p
⌃i. Note that j

was defined in the range [0; 2d + 1], and the square matrix ⇠
contains only d columns. This apparent notation confusion is
cleared if we think that the sigma points are simply the mean
xi (j = 0) and xi ± ⇠j , i.e. , the sum and subtraction of each
of the dimensions of the covariance matrix ⌃i. Therefore, the
j-th column of ⇠j must be counted separately for the sj=1

and sj= � 1 sets, such that j = [1, d] for each set of sigma
points. Moreover, let UDUT be a singular value decomposition
of covariance matrix ⌃, such that U = {U1, . . . , Ud} and D =

diag{�1, . . . ,�d}, then ⇠k =

p
�kUk.

For multidimensional systems, choosing k = 3 � d mini-
mizes the mean squared error up to the fourth order. There is
also no restriction on the sign of k, but if k is negative, then
the distribution of the sigma points cannot be interpreted as a
probability distribution. Furthermore, with a negative k there is
the possibility that the resulting covariance will be non-positive
semi-definite. In line with these discussions presented in [15]
we set the parameter m to m = 3 and force a non-negative
value k resulting in k = max([0, 3� d]).

F. Hierarchical Compression

The global optimization of (15) would require the eval-
uation all possible cluster assignments ⌅(M), which, as the
number of components grows, quickly becomes computation-
ally prohibitive. A significant reduction in complexity can
be achieved by a hierachical approach to clustering. Similar
approaches have been successfully applied for data compres-
sion of Gaussian mixture models to a predefined number of
components [4], [17]. In our implementation, we start by
splitting the the entire sample distribution ps(x) into two
sub-mixtures using Goldberger’s K-means algorithm [4] for
mixture models, with K=2. In order to avoid singularities
associated with dirac-delta components of the sample model,
instead of ps(x) we apply the K-means algorithm to the
corresponding KDE model pKDE(x). Next, each sub-mixture is
approximated by a single Gaussian using eq. 14 and the sub-
mixture which yields the largest local error ˆE(p1(x),Hopt) is
further split into two sub-mixtures. This process is continued
until the the largest local error is sufficiently small to fulfill
the condition E(⌅(

ˆM))  Dth of eq. 15. This process
produces a binary tree with ˆM leafs and where each leaf
represents the clustering assignments ⌅(

ˆM) = {⇡i}j=1:M

among the components of the sample distribution ps(x). We
can then use the cluster assignments ⌅( ˆM) to approximate the
corresponding components in the sample distribution ps(x) by
a single Gaussian, resulting in the desired compressed sample
distribution p̂s(x). Figure 2, illustrates this process.

Recall that we keep track of a detailed model for each
component in the sample distribution. This means that if
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such that the error induced by the compression does not
increase significantly. Since a direct optimization (e.g., [32])
of the parameters in q̂(x) can be computationally prohibitive,
and prone to slow convergence even for moderate number
of dimensions, we resort to a clustering-based approach. The
aim is therefore to identify clusters of components in q(x),
such that each cluster can be sufficiently well approximated
by a single component in q̂(x). Let !(M) = {πm}m=1:M be a
collection of disjoint sets of indexes, which cluster q(x) into M

submixtures. The submixture corresponding to the mth cluster
is defined as

q(m)(x) =
X

i∈πm

wiφ$si (x − µi) (11)

and is approximated by the mth mixture component
ŵmφ$̂sm

(x−µ̂m) of q̂(x). The parameters of the mth component
are defined by matching the first two moments (mean and
covariance) [35] of the submixture

ŵm =
X

i∈πm

wi , µ̂m = ŵ−1
m

X
i∈πm

wiµ̂i

$̂sm = ŵ−1
m

X
i∈πm

wi($si + µiµ
T
i ) − µ̂mµ̂T

m. (12)

We therefore seek a clustering assignment !(M), such that
the number of components in the resulting model is reduced,
i.e., M < N, and that the clustering error remains sufficiently
low

M̂ = arg min
M

E(!(M)) , s.t. E(!(M̂)) ≤ Dth (13)

where E(!(M̂)) is the clustering error induced by clustering
assignment !(M̂) with M̂ clusters and Dth is a bound on that
error.

A. Hierarchical Compression

In principle, the global optimization of (13) would require
evaluation of all possible cluster assignments !(M) for the
number of clusters M ranging from one to N, which becomes
quickly computationally prohibitive. A significant reduction
in complexity of the search can be obtained by a hierarchical
approach to cluster discovery.

In our implementation, we therefore first build a dendrogram
among the centers of components in q(x). This generates a
binary tree in which each node represents one possible local
clustering assignment πm (Fig. 2). Starting at the root node, we
test if the distribution can be compressed into a single Gaus-
sian without significantly increasing the error E(!(M)). If that
is not the case, we descend the tree, which effectively splits the
distribution into a two-Gaussian approximation (one Gaussian
per node). We then iteratively descend further down the tree,
at each step along the node that maximally contributes to the
clustering error E(!(M)). We stop descending the tree once
E(!(M)) falls below a desired threshold. The corresponding
M̂ leafs of the tree represent the clustering assignments
!(M̂) = {πm}m=1:M̂ . Once the clustering !(M̂) is found, the
compressed sample distribution q̂(x) (10) is calculated using
(11) and (12) and the corresponding compressed KDE p̂(x)
can be calculated using (6) and (7). An illustration of the
hierarchical clustering on a 1-D example is shown in Fig. 2.

Fig. 2. Hierarchical clustering. The components of the sample distribution
q(x) are hierarchically clustered to form a tree. Each of the resulting three leafs
is approximated by a single Gaussian and together they form the compressed
sample distribution q̂(x).

In order to efficiently implement the hierarchical compres-
sion, the cost of compression E(!(M)) should be written as a
sum over local clustering errors, which can be calculated for
each cluster independently from the others. We propose such
a cost function next.

V. Discriminative Compression Cost

Note that the compression error is always evaluated on the
KDEs calculated from the (compressed) sample distributions.
In the following, we will assume that we want to compress
the ckth class pdf p(x|ck) into p̂(x|ck), while constraining the
induced errors in the classifier. In particular, we want to keep
the classification properties of the class models unchanged
as much as possible. First, we have to rewrite this model
into a classification model. We consider the class ck as a
positive example class C+, described by a mixture model
p(C+|x) ∝ p(x|ck)p(ck). Then, we collect all the remaining
classes to form a single negative example class C−, p(C−|x) ∝�

j\i p(x|cj)p(cj). The posterior over the resulting two-class
model is then defined as

p(C|x) = δC+ (C)p(C+|x) + δC− (C)p(C−|x) (14)

where δC∗ (C) is a Dirac-delta function centered at C∗. The
compressed counterpart of the posterior (14) is obtained by
setting p̂(C+|x) ∝ p̂(x|ck)p(ck)

p̂(C|x) = δC+ (C)p̂(C+|x) + δC− (C)p(C−|x). (15)

From the classification point of view, we can say that p(x|ck)
can be compressed into p̂(x|ck) as long as the posterior pdf
over C before compression remains approximately unchanged
after the compression. This idea is illustrated in Fig. 3. The
first row shows the positive and negative mixture model and
the corresponding posterior of C over the feature space. The
second and the third rows show a valid and invalid compres-
sion, respectively. The first compression is valid, since the pos-
terior remains approximately unchanged. On the other hand,

Fig. 2. Hierarchical Clustering example. Image taken from [10].

two components are merged, their underlying detailed models
should be merged as well. The detailed model q̂j(x) of the
j-th component in the compressed model p̂s(x) is calculated
by first defining a normalized extended mixture model.

q̂jext(x) =
⇣ X

i2⇡j

wi

⌘�1 X

i2⇡j

wi qi(x) (25)

If the extended mixture has one or two components, then
q̂j(x) = q̂jext(x). If this mixture has more than two com-
ponents, then the two-component detailed model q̂j(x) is
generated by splitting q̂jext(x) into two sub-mixtures using
Golberger K-means and approximating each sub-mixture by
a single Gaussian using eq. 14. The motivation for the two-
component representation of the detailed model is that it
provides the simplest possible model that enables detection and
recovery of over-compressions. Detailed models with higher
number of components would allow more detailed sample
models and would better model the data. However this would
be done at the cost of higher computational complexity.

G. Revitalization

The compression algorithm identifies and compresses clus-
ters of components whose compression does not introduce a
significant error into the KDE with bandwidth Hopt estimated
at the time of compression. However, as more samples arrive,
the sample distribution changes. Consequently, both Hopt and
KDE estimation change. As a result, a compression which may
have been valid for a KDE at some point in time, may later
become invalid.

These over-compressions can be detected through the in-
spection of the detailed model of each component in the sample
distribution ps(x). The local clustering error ˆE(qi(x),Hopt)
eq. 16 of each component in the sample distribution can be
evaluated against its detailed model qi(x) to verify whether the
error exceeds the threshold Dth. Those components in ps(x)
for which ˆE(qi(x),Hopt) > Dth, are removed from the sample
distribution and replaced by the two components of their
detailed model. These new components, however, need their
own detailed model. For this, we generate a new detailed model
based on the covariances of each of the new components. For
example, let wi�⌃i(x � µi) be one of the new components.
If the determinant of ⌃i is zero, then this component is a
Dirac-delta function, corresponding to a single data-point, and

its detailed model is just the component itself. However, if
the determinant is non-zero, it means that the component has
been generated through clustering of several detailed models
in previous compression steps. Its detailed model is initialized
by splitting �⌃i(x � µi) along its principal axis [18] into a
two-component mixture, whose first two moments match those
of the original component. Splitting along the principal axis
has two interesting properties: first, since the component is
symmetric around the mean, the splitting process minimizes
the error induced by splitting the Gaussian; and second, it is
moment preserving, i.e., the mean and covariance of the split
Gaussian, and thus, of the entire mixture, remains unchanged.

In detail, let UDUT
= ⌃i be a singular value decomposi-

tion of ⌃i with singular values and singular vectors ordered
by descending singular values. Then, the component detailed
mixture model is defined as

qi(x) =
2X

k=1

wk�⌃k(x � µk),

µ1 = FM + µi, µ2 = FM � µi,

⌃k = FCFT, wk =

1

2

wi

(26)

where C = diag([3/4,01⇥(d�1)]), M = [0.5,01⇥(d�1)]
T,

F = U
p

D and 01⇥(d�1) represents an all-zeros row vector of
length (d� 1).

H. Algorithm Overview

The previous sections formally described all individual
phases of the online kernel density estimation approach, and
a full overview of the method is now possible. As each new
observation is added to the model, it is added in the form
of a Dirac-delta function, i.e., a Gaussian with mean x and
variance ⌃=0. As more samples arrive, model complexity
grows linearly. To avoid this and keep complexity low, a
compression algorithm is called when complexity surpasses a
predefined threshold. This threshold may be fixed, or allowed
to change automatically during execution. The compression
algorithm consists of two steps. The first revitalizes the mixture
by splitting components that are no longer good representations
of the underlying data. This allows us to have the highest
fidelity possible in the model, prior to the second step. The
second step merges components that are sufficiently similar,
i.e., that represent approximately the same information and
are thus redundant when considered together. These merges
may later be invalidated by subsequent samples, and may be
subject to the revitalization step. Figure 3 presents a graphical
overview of this process.

III. XOKDE++ : FAST AND ROBUST KDE

The online kernel density estimation approach presented
before presents several desirable properties as it is non-
parametric, does not require to save all previous observations,
allows for model flexibility and evolution as more samples
are added, and the theoretic algorithm is valid for arbitrary
dimensionality.

However, the original oKDE implementation in MATLAB
suffers from various problems as it is non-optimized MATLAB
research code and highly redundant. This makes the task of



a heuristic is used to determine when a subset of the data
(Gaussians) can be replaced by a single component. Han et al.
[26] proposed an online approach inspired by the kernel density
estimation in which each new observation is added to the model
as the Gaussian kernel with a predefined bandwidth. The model’s
complexity is maintained through the assumption that the under-
lying probability density function can be approximated suffi-
ciently well by retaining only its modes. This approach deteriorates
in situations when the assumed predefined bandwidths of kernels
are too restrictive, and when the distribution is locally non-Gaussian
(skewed or heavy tailed distribution).

A positive side of imposing assumptions on the estimated
distribution is that we can better constrain the problem of
estimation and design efficient algorithms for the task at hand.
A downside is that once the assumptions are violated, the
algorithms will likely break down and deteriorate in performance.
In this paper we therefore aim at an algorithm, which would be
applicable to multivariate cases, would be minimally constrained
by the assumptions and therefore efficiently tackle the difficulties
of online estimation.

1.1. Our approach

We propose a new online kernel density estimator which is
grounded in the following two key ideas. The first key idea is that
unlike the related approaches, we do not attempt to build a
model of the target distribution directly, but rather maintain a
non-parametric model of the data itself in a form of a sample
distribution—this model can then be used to calculate the kernel
density estimate of the target distribution. The sample distribu-
tion is constructed by online clustering of the data-points. The
second key idea is that we treat each new observation as a
distribution in the form of a Dirac-delta function and we model
the sample distribution by the mixture of Gaussian and Dirac-delta
functions. During online operation the sample distribution is
updated by each new observation in essentially the following
three steps (Fig. 1a): (1) In the step 1, we update the sample
model with the observed data-point. (2) In the step 2, the updated
model is used to recalculate the optimal bandwidth for the KDE.
(3) In the step 3, the sample distribution is refined and com-
pressed. This step is required because, without compression, the
number of components in our model would increase linearly with
the observed data. However, it turns out that a valid compression
at one point in time might become invalid later, when new
data-points arrive. The result of these invalid compressions is
that the model misses the structure of the underlying distribution
and produces significantly over-smoothed estimates.

To allow the recovery from the early compression, we keep for
each component in the sample distribution another model of the data
that generated that component. This detailed model is in the form of
a mixture model with at most two components (Fig. 1b). The

rationale behind constraining the detailed model to two components
is that this is the simplest detailed model that allows detection of
early over-compressions. After the compression and refinement step,
the KDE can be calculated as a convolution of the (compressed)
sample distribution with the optimal kernel calculated at step 2.

Our main contribution is the new multivariate online kernel
density estimator (oKDE), which enables construction of a multi-
variate probability density estimate by observing only a single
sample at a time and which can automatically balance between
its complexity and generalization of the observed data-points. In
contrast to the standard bandwidth estimators, which require
access to all observed data, we derive a method which can use a
mixture model (sample distribution) instead and can be applied
to multivariate problems. To enable a controlled compression of
the sample distribution, we propose a compression scheme
which maintains low distance between the KDE before and after
compression. To this end, we propose an approximation to the
multivariate Hellinger distance on mixtures of Gaussians. Since
over-compressions occur during online estimation, we propose a
revitalization scheme, which detects over-compressed compo-
nents and refines them, thus allowing efficient adaptation.

The remainder of the paper is structured as follows. In Section 2,
we define our model. In Section 3, we derive a rule for automatic
bandwidth selection. We propose the compression scheme in
Section 4, where we also address the problem of over-compression.
The online KDE (oKDE) algorithm is presented in Section 5. In
Section 6, we analyze the influence of parameters, data order, and
the reconstructive and discriminative properties of the oKDE. We
compare the oKDE to existing online and batch state-of-the-art
algorithms on examples of estimating distributions and on classifi-
cation examples. We conclude the paper in Section 7.

2. The model definition

As stated in the introduction, we aim at maintaining a
(compressed) model of the observed data-points in the form of
a distribution model, and use this model to calculate the KDE
when required. We therefore start with the definition of the
distribution of the data-points. Each separate data-point can be
presented in a distribution as a single Dirac-delta function, with
its probability mass concentrated at that data-point. Noting that
the Dirac-delta can be generally written as a Gaussian with zero
covariance, we define the model of (potentially compressed)
d-dimensional data as an N-component Gaussian mixture model

psðxÞ ¼
XN

i ¼ 1

aifRsi
ðx$xiÞ, ð1Þ

where

fRðx$lÞ ¼ ð2pÞ$d=2jRj$1=2eð$1=2ðx$lÞT R$1ðx$lÞÞ ð2Þ

Fig. 1. A three-step summary of the online KDE iteration (a). The sample model Sðt$1Þ is updated by a new observation zt and compressed into a new sample model S(t).
An illustration of the new sample model S(t) (sample distribution psðxÞ along with its detailed model fqiðxÞgi ¼ 1:4) is shown in (b).

M. Kristan et al. / Pattern Recognition 44 (2011) 2630–2642 2631

Fig. 3. Global overview of a full iteration of the oKDE approach (a). The sample model St�1 is updated by a new observation zt and compressed into a new
sample model S(t). In (b), the new sample distribution along with its detailed model is shown. Image taken from [9].

changing and extending the algorithm much harder and error
prone. Furthermore, as the number of feature dimensions grow,
performance heavily degrades and memory usage grows pro-
hibitively. Besides performance, the original implementation
is also not designed for high dimensionality, which can lead
to numeric instability. One such example is the covariance
determinant, which is computed directly. For certain datasets
it is easy to have situations where the determinant underflows
or overflows.

The work presented in this paper presents an efficient
and numerically robust, object oriented implementation of
the oKDE. It was implemented in C++ and uses Eigen
v3.2.2 [19] for algebraic computations such as, among others,
matrix multiplication, singular value decomposition (SVD)
and Eigenvalue Decomposition. Implementing this work in
an object oriented programing (OOP) language allows for
higher flexibility and abstraction advantages. Plus, the C++
allows for efficient memory usage by using move semantics,
which effectively reduces the number of copies and memory
allocations.

While we follow the theoretical model presented before,
we took several implementation decisions in order to deal with
numeric issues and coping with high dimensionality. Strategies
to improve performance such as postponing computations until
they are needed, or caching results until they are invalidated,
are also described in the next subsections.

A. Numeric Stability

The gaussian probablity density function as defined in
eq. 2 uses the determinant and the inverse of the covariance
matrix. One way to efficiently compute the inverse of a non-
singular matrix is to first compute it’s LU decomposition and
use it to compute the inverse. This is also convenient as we
will need to compute the matrix determinant. With the LU
decomposition, and since our covariance matrix is guaranteed
to be positive definite, the determinant can be simply computed
by multiplying the diagonal entries of the matrix U. This
approach, however, may lead to numeric issues if we have a
large number of dimensions. When working with 1000 or 5000
dimensions it is very easy to overflow or underflow even if
we have double precision floating points. To avoid this pitfall,
we compute the logarithm of the determinant instead. Again,
the LU decomposition is convenient as this operation simply
involves computing the logarithm of each entry in the diagonal
of matrix U, and then sum those entries.

A covariance matrix is, by definition, a positive semi-
definite matrix. This means that there is the possibility that
sometimes the covariance matrix is singular. In that case the
inverse cannot be computed. If the Gaussian is a Dirac-delta,
this is expected. However, sometimes the data observations
may have dimensions that change very seldom and we have
not seen sufficient observations to have a different value in
that dimension. This situation produces a rank deficient matrix,
in which one dimension never changes, with a zero-valued
covariance along that axis. To correct this situation we detect
and correct singular or near singular matrices by computing
it’s eigen-decomposition and checking for eigenvalues bellow
a predefined threshold of 10�9. If any of the eigenvalues falls
bellow, then a covariance revitalization algorithm is employed.
This consists in correcting all problematic eigenvalues by 1%
of the average of the eigenvalues. In other words, we inflate
all flat dimensions to 1% the average variance in the other
non-flat dimensions.

In both the optimal bandwidth and compression phases
described in sections II-B and II-C are performed on a
spherized, or whitened version of the data. This scales and
decorrelates the data, reducing impact of sample distribution
and outlier presence. This whitening transformation starts by
approximating the whole model by a single Gaussian. The re-
sulting covariance is the model covariance ˆ

⌃, we then compute
the transformation parameters needed to transform the model
covariance into the identity matrix. Those parameters are then
individually applied to all components in the mixture. The
inverse operation, the colouring transformation can be used
to recover the original data. The whitening transform impacts
the model in two ways. The first is performance, since in
eq. (7) the F will be the identity matrix, and thus significantly
reducing computational cost. The second advantage lies in
the Goldberger K-Means approach in the Model Compression
phase. Having the data normalized reduces the impact of
outliers. It also removes dimensions with zero variance, leaving
us with only a subspace. This helps the Goldberger K-Means
converge to better solutions.

Since the whitening transformation is neutral, meaning we
can transform forwards and backwards, we could apply the
transformation to the data, and later apply the inverse oper-
ation. However, successive forward and backward operations
might lead to small precision errors, that, with long compu-
tational times, could severely impact the estimated models.
With this in mind a secondary whitened model is temporarily



created and used for the entire compression algorithm. In
the revitalization phase we select the components that deviate
too much from its internal underlying model. Those selected
components are split in both main and secondary models. Then
in the Hierarchical Clustering phase, the components will be
grouped and marked for merge. This operation is performed on
the secondary model. When complete, the marked components
are actually merged on the main model, and the secondary
model is discarded as it is no longer needed.

Sometimes, the observed data may produce optimal band-
widths of zero. This is inconvenient as it means the Diracs
will remain without a covariance matrix leaving us unable to
use the likelihood function. One solution for this, is to detect
these occurrences and set the bandwidth as the identity matrix
and then computing the backwards whitening transformation.
Recall that the optimal bandwidth is computed on the whitened
data.

B. Lazy Operation and Result Buffering

In theory, each time a sample is added, the optimal band-
width should be updated. However, the optimal bandwidth is
only needed for the Compression phase or to evaluate the
likelihood of a given sample. If none of these operations
is needed, then the optimal bandwidth computation can be
postponed. What this means is that the cost of adding a
sample reduces to simply adding one dirac component to the
mixture and accordingly update the weights of the existing
components. This can be done without any impact on model
quality. An illustrative example can be that of adding a several
of components and then performing the compression phase.
Even if we did compute the optimal bandwidth on each
component insertion, each subsequent one would replace the
previous computed optimal bandwidth such that only the last
would be used.

The determinant and the inverse of the covariance matrix of
a component are needed to compute the likelihood function.
This function is called very often, so computing the deter-
minant and the inverse each time the likelihood function is
needed is expensive and wasteful. A better way is to save
the determinant and the inverse once it has been computed
until the component covariance changes, making the previously
computed inverse invalid. As with the optimal bandwidth,
there is advantage in postponing the determinant and inverse
computation until they are actually needed.

C. Diagonal Covariance Matrices

Using diagonal covariance matrices significantly reduces
the amount of variables needed to be estimated. However,
this forces the components to ignore dependencies across
dimensions. In other words, we produce covariance matrices
that ignore part of the data variance, producing less detailed
components. This could pose a problem of accurately fitting
the data, but can be compensated by using more components.

D. Extensibility

Besides speed and memory efficiency, one central contri-
bution of our work is the adaptability and extensibility of the
algorithm and implementation. Since it was implemented in a
OOP language, in this case, C++, the templated classes allow

for easy extension. For example, it is straightforward to replace
full covariance by diagonal covariance. We can also extend the
implementation to use triagular covariance matrices, by simply
writing a class and call the template accordingly. The same
logic applies if we want to replace the Gaussian pdf by a dif-
ferent one. Instead of Gaussians, we could easily use Student-t
distributions simply by implementing the corresponding class
and respecting the current interfaces. Similarly, changing the
current clustering approach by another is also trivial as long
as the interfaces are respected.

IV. EVALUATION SETUP

The goal of our work is to have an efficient implementation
of the original oKDE [9] approach. Thus, we want to produce
models with similar quality while taking a fraction of the time
and memory needed by the original implementation. Even
though the paper description is closely followed, there are
implementation details that may be different from those of the
original authors and thus, the final models are different. Plus,
the algebra routines implemented in Eigen 3.x are not the same
as the ones implemented in MATLAB. One example lies with
the SVD computation, which produces and equally valid, but
different decomposition. All of this has direct impact on the
final model produced by the training algorithm and prevents
us from producing exactly equal models.

However, having different models does not say anything
about it’s intrinsic quality. To properly evaluate our imple-
mentation and extensions, and to maximize the comparability
of these results, we decided to follow the main strategies of
the original oKDE paper [9]. Those are based on intrinsic
and extrinsic evaluation. On the intrinsic side, we measure
the quality by using the average negative log-likelihood and
overall model complexity. On the extrinsic side, we measure
accuracy on a classifier based task.

Besides the oKDE and xokde++, which are both gener-
ative methods, we decided to compare with a discriminative
approach, which are typically better suited for classification
tasks. Again with reproducibility of the original oKDE work
in mind, we used the online independent SVM (OISVM) [20]
as implemented in the DOGMA [21] MATLAB toolbox.

For all evaluations a variety of datasets was used, which
correspond to the datasets used on the original paper. Some
datasets have been updated in recent years, so, in order to
have comparable results between our implementation and the
original one, we ran both approaches in the same, most
recent, datasets. In addition we also evaluate performance
on our L2f Face Database, which allows to test the high
dimensional scenario, and for which neither the original oKDE
implementation nor OISVM could handle.

As we want to, as much as possible, reproduce the results
obtained in the original work of oKDE, we follow the same
evaluation setup. Thus, for the online classifier training task,
we randomly shuffled the data in each dataset and use 75%
of the data to train and the remaining to test. For each dataset
we generate 12 such random shuffles to minimize impact of
lucky/unlucky partitions. To maximize comparability, the same
12 shuffles given to the matlab oKDE implementation are given
to our C++ implementation.



For the kernel density estimation approaches each class
is represented by the KDE model resultant of it’s training
samples. For the oKDE approach, each class model is ini-
tialized with 3 samples before adding the remaining 1 at a
time. In our implementation there is no need for initialization
and each model is trained by adding 1 sample at a time from
the very start. In the end of the training phase we end up
with k models, corresponding to k classes. To evaluate the
classification performance we use a simple Bayesian criterion

ŷ = argmax

k
p(x|ck)p(ck) (27)

where ck corresponds to the kde trained with the samples from
the k’th class, p(x|ck) is the likelihood of the sample to be
explained the k’th model, and p(ck) is the probability of a
sample from ck to occur in the entire ŷ model.

OISVM is an online SVM approach which trains a binary
classifier. Thus, for a multiclass problems we need to train
k binary classifiers using all training samples corresponding
to the class as positive examples, and the remaining training
samples as negative examples. Then, for the classification
assignment, a 1vsAll approach was followed

ŷ = argmax

k
fk(x) (28)

in which fk(x) provides the confidence score of the k’th
class binary classifier for the sample x. We used a second
order (quadratic) polynomial kernel with gamma and coef0
parameters set to 1. The complexity parameter C was also
set in advance and set to 1. A more proper way to set the
C parameter is to use cross validation on the training set
and find the most suitable parameter. However, our setup is
that of online learning, were unknown classes and data is
bound to appear. In a sense, not even a training set exists a
priori, and the classifier is to be trained continuously as more
samples arrive. Preliminary experiments also shown that for
several datasets, changing the C parameter did not change the
result significantly, and it typically worsened results. For these
reasons, and since the risk of harming classifier performance
significantly appears to be contained, we set C=1 parameter
for all experiments.

As stated before, we wish to make minimal assumptions
about data nature and distribution, as both can change as
more samples arrive. As such, we purposely do not make
any preprocessing such as feature normalization. The data is
used as is available in the dataset, and any potential data
transformation is the responsibility of the internals of each
approach.

A. UCI Datasets

The authors of the original oKDE paper used several freely
available datasets to evaluate and compare their approach
against other state of the art approaches. In the spirit of
having comparable results, we will use the same datasets where
possible, as some datasets are no longer available or have
been updated. These real-life datasets are part of the UCI
Machine Learning Repository [22] and differ in length, data
dimensionality and number of classes. Table IV-A presents a
summarized view of the dataset’s properties and Fig. 4 shows
dataset balancing.

Dataset NS ND NC
Iris 150 4 3
Yeast 1484 8 10
Pima 768 8 2
Winequality-red 1599 11 6
Winequality-white 4898 11 7
Wine 178 13 3
Letter 20000 16 26
Image Segmentation (seg) 2310 19 7
Steel 1941 27 7
Breast Cancer 569 30 2
Skin 245057 3 2
Covtype 581012 10 7

TABLE I. PROPERTIES OF DATASETS WITH REAL-LIFE DATA, DENOTED
BY NUMBER OF SAMPLES (NS), NUMBER OF DIMENSIONS (ND) AND

NUMBER OF CLASSES (NC)
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Fig. 4. Class balancing accross all UCI datasets.

B. L2f Face Database

The L2f Face Database consists of 30000 indoor free pose
face images from 10 subjects, corresponding to 3000 images
per subject. The capture was performed using a PlayStation
Eye camera with a 640x480px resolution at 60Hz. Each
video frame was fed to the open-source computer vision tool
OpenCV [23] face detector, which uses a Haar Cascade [24]
approach for face detection. This detector predominantly de-
tects frontal face poses, but is tolerant to high inclination and
head rotation poses. The detected face square regions were
cropped and resized to 64x64px blocks with pixel mixing using
the pamscale tool. In the capture process, each subject was
asked to stand in front of the camera and make a variety of
facial poses, expressions, to speak with other person and to
move the head in several directions. In essence, each speaker
was asked to behave normally, while avoiding being static.
Figure 5 shows some examples on the variety of poses in the
dataset. By letting the OpenCV face detection algorithm define
the region where the face is located, to later crop the frame, we
obtain a fully automatic face capture phase, and since we have
no restriction on facial pose or expression, no related post-
processing is necessary. This capture approach, being simple,
automatic and robust (on facial pose and expression), means
it can be easily integrated in an online training algorithm such
as ours, where the images even need not to be saved in disk,
being directly fed to the training algorithm.

However, to have reproducible results, a fixed dataset had
to be created and its images stored. With that in mind, this



capture phase resulted in a free pose dataset captured in
indoor conditions and in a realistic face capture scenario,
allowing us to test the online density estimation approach in
a face recognition task. The images from the dataset, being
automatically cropped from the the OpenCV Haar Cascade
detected face region, present some background. One way to
remove the background is to take advantage of the fact that
faces tend to be centered in the cropped square, such that
removing a number of pixels from the four sides results in
a restricted view of the face with minimal or no background.
To evaluate the impact of background presence, five crops are
available (0,2,4,8 and 16). A crop of 0 means no extra crop
was performed, i.e. , the original image. A crop of 2, means
that 2 pixels were discarded from each side of the squared
image. Subsequent crops of 4,8 and 16 follow the same logic.
Figure 6 presents an example of the impact of the various crops
in various sample images.

Fig. 5. Some examples of the dataset pose and expression variability.

Fig. 6. All crop schemes, 0, 2, 4, 8, 16, and the masking approach to extract
128 informative pixels.

V. RESULTS

In the following subsections the performance of the original
oKDE, xokde++ and OISVM will be evaluated under various
perspectives. Furthermore, one advantage of our implementa-
tion is it’s modularity. Thus, it is very easy to implement a
version that uses diagonal covariance matrices instead of full
covariance. This, although potentially worsening the model
quality, as relationships across dimensions are ignored, has
dramatic impact on speed and memory usage, especially as
the number of dimensions increases. While for full covariance
the number of variables to estimate grows quadratically with
the number of dimensions, in the diagonal version that number
grows linearly. In order to study how much the model quality
degrades by using diagonal covariance matrices, we also
present results for the okde++/diag.

A. Model Quality

To measure the estimation quality, we use the average nega-
tive log-likelihood. We also compare of the average complexity

of the models. Table II presents results for experiments after all
training samples were observed. The xokde++ implementation
produces models with similar complexity but with lower aver-
age negative log-likelihood. This is indicative that, depending
on the dataset data, we produce better fits with approximately
the same complexity. This is more evident on datasets, such
as the steel, segmentation and cancer, with very dissimilar
feature spaces which translates in dimensions with very little
variance, and others with very large variances. Our numerical
stability contribution allows to recover from these situations
by correcting the covariances with a small induced variance,
computed using available information, until more data arrives
and allows for a more accurate estimation.

Dataset xokde++ xokde++/diag oKDE

Complexity
Iris 28 ± 3 22 ± 3 28 ± 3
Yeast 31 ± 15 30 ± 19 31 ± 15
Pima 62 ± 9 42 ± 19 64 ± 7
Winequality-red 39 ± 23 53 ± 37 40 ± 24
Winequality-white 31 ± 24 54 ± 40 36 ± 25
Wine 44 ± 7 44 ± 7 45 ± 7
Letter 65 ± 12 42 ± 9 66 ± 14
Image Segmentation (seg) 49 ± 12 51 ± 24 52 ± 11
Steel 8 ± 2 20 ± 7 4 ± 1
Breast Cancer 40 ± 7 153 ± 11 50 ± 12
Skin 8 ± 2 10 ± 2 8 ± 2
Covtype 18 ± 5 17 ± 5 20 ± 5

-L
Iris 7.4 ± 1.7 3.3 ± 1.3 7.8 ± 1.6
Yeast -13.2 ± 0.5 -14.3 ± 0.3 -7.1 ± 1.7
Pima 29.3 ± 0.5 27.6 ± 0.2 31.0 ± 0.7
Winequality-red -0.2 ± 0.6 0.2 ± 0.3 14.7 ± 4.2
Winequality-white 0.5 ± 0.2 1.6 ± 0.2 55.2 ± 54.3
Wine 51.1 ± 4.3 33.0 ± 3.4 64.9 ± 18.5
Letter 17.9 ± 0.1 19.9 ± 0.1 18.2 ± 0.1
Image Segmentation (seg) 25.7 ± 0.8 31.0 ± 1.0 156.6 ± 33.7
Steel – 85.2 ± 4.3 –
Breast Cancer -25.6 ± 5.7 -16.4 ± 2.4 433.9 ± 33.7
Skin 13.5 ± 0.3 13.9 ± 0.2 13.4 ± 0.2
Covtype 51.9 ± 0.1 55.9 ± 0.0 52.6 ± 0.1

TABLE II. THE AVERAGE NUMBER OF COMPONENTS PER MODEL AND
AVERAGE NEGATIVE LOG-LIKELIHOOD -L ALONG WITH ± ONE STANDARD
DEVIATION. THE EMPTY ENTRIES IN THE STEEL DATASET MEAN THAT THE

MODEL DID NOT CONVERGE PROPERLY.

B. Classifier Accuracy

To analyse the discriminative properties of the implementa-
tions we constructed classifiers as described in section IV. As
show in table V-B, we achieve better performance in 7 out of
12 datasets, and lower performance in only 3 datasets. Some of
the results for oKDE are different than those reported in the
original papers. These differences are accounted by the fact
that no dataset was balanced or normalized for unit variance,
as reported in the original paper. We intentionally used the
datasets with no further processing such as it provides the most
realistic online operation scenario, where data sample distri-
bution is now known. These results provide further indication
that our implementation possesses greater numeric stability,
handling non-normalized datasets.

Results for the online independent support vector ma-
chine (OISVM) are also provided as it is usefull to compare
the discriminative power of our generative approach with
a discriminative one. As the table shows, OISVM typically
outperforms the generative approaches, but not by far. It also



xokde++ xokde++/diag oKDE OISVM

Iris 96.4 ± 2.7 95.0 ± 3.4 96.4 ± 2.4 97.1 ± 0.2
Yeast 49.7 ± 2.3 48.1 ± 1.6 50.6 ± 3.3 59.2 ± 7.7
Pima 67.8 ± 3.4 70.1 ± 3.9 69.7 ± 2.9 76.9 ± 1.5
Winequal-red 62.0 ± 2.5 54.6 ± 1.9 56.9 ± 6.3 58.3 ± 10.6
Winequal-white 49.9 ± 1.3 42.4 ± 1.7 44.9 ± 10.6 53.2 ± 37.2
Wine 97.7 ± 1.4 98.5 ± 1.8 93.9 ± 6.1 96.8 ± 0.3
Letter 95.8 ± 0.2 93.4 ± 0.4 95.8 ± 0.2 93.0 ± 0.4
Image Seg. 91.5 ± 1.1 89.4 ± 1.2 75.0 ± 5.3 95.0 ± 84.1
Steel 31.9 ± 11.0 56.9 ± 9.0 8.7 ± 1.0 24.3 ± 0.0
Breast Cancer 94.8 ± 1.7 96.2 ± 1.7 52.8 ± 12.0 95.9 ± 0.6
Skin 99.6 ± 0.1 99.4 ± 0.0 99.7 ± 0.1 99.8 ± 0.0
Covtype 52.0 ± 1.2 51.6 ± 0.6 68.0 ± 0.9 —
TABLE III. RESULTS FOR AVERAGE CLASSIFICATION ACCURACY

ALONG WITH ± ONE STANDARD DEVIATION.

shows that it suffers from the same numeric instabilities as the
oKDE implementation.

C. Time and Memory Performance

The previous results shown that our implementation pro-
duces models with similar or better quality than the original
one. However, our implementation does so at lower memory
cost and much faster computation time. Table IV presents
results for time and memory usage taken to train and test
the datasets. It shows that our approach achieves speedups
of 3 to 10 times depending on the dataset. For the diagonal
matrices the speedup is even grater, going from 11 to up to 40
times. Note that the oKDE MATLAB implementation already
has calls to vectorized and parallel routines. Still, our serial
version, which uses a single core for the whole computation
time, is able to consistently achieve speedups. In terms of
memory usage, when compared to the oKDE we use, at most,
10% of the memory required by the original implementation.
This difference is more critical in large datasets such as the
skin and covtype. For these datasets, the oKDE implementation
needed 913MB and 5064MB, respectively, as our needed only
83MB and 361MB.

For the OISVM, the maximum memory usage was
2255MB, which is even more than the needed for oKDE. In
fact, OISVM, has a tendency to need more memory. This trend
is even clearer as the number of classes increases. Since the
OISVM trains a binary classifier, for multiclass problems we
need to train K classifiers. The letter dataset is an example
for that, since it has 26 classes the memory needed relative
to the oKDE was 4 times more. For large datasets time
performance also degrades, where the skin dataset took nearly
twice the time it took for oKDE. This is even more evident
the covtype dataset, which has 500,000 samples, and 20 days
of computation were not enough to complete training a single
shuffle, let alone the 12 shuffles from our evaluation setup.

D. Performance of Full vs Diagonal Covariances

The previous results show that our implementation pro-
duces consistently equivalent or better models than the oKDE
original implementation at lower computational and memory
cost. However, our implementation also allows to choose
between full and diagonal covariances. Table VI presents a
detailed comparison of the relative difference of the impact
of using diagonal covariances in the quality of the model and
computational requirements. From this, we can see that using
diagonal covariances produces models with slightly higher

complexity, with small loss in model quality. In fact, for the
steel dataset, using diagonal covariances allowed the model
to avoid the severe numeric instability found when using full
covariances, where feature variance systematically produced
singular matrices.

The speedup relative to the full covariance approach ranges
between 3 to 22 times with a median value of 5.5. For full
covariances, the number of dimensions affect the memory
requirements and the number of variables increases quadrati-
cally with the number of dimensions. So datasets with higher
dimensionality will have greater benefit for using diagonal
covariances. However, the diagonal approach tends to need
more components, this, sometimes, partially offsets the previ-
ous gain. Even so, the median memory usage of the diagonal
approach is 78% of the needed for full covariance. This number
is even greater if we only consider datasets with more than 15
dimensions. In this case the median value falls to 58% with
only small losses in accuracy, around 2% absolute if we ignore
the 25% in the steel dataset. Considering all datasets, except
the steel dataset, which is indicative for the diagonal approach
numeric robustness but not usefull for an aggregate estimate
of quality loss of using diagonal covariances, we obtain a
median value of 1.35%. This means that the discriminative
model quality for the covariance matrices is very similar to
the full ones.

VI. CONCLUSIONS

In this paper we presented a state of the art online ker-
nel density estimation approach and implementation that is
numerically robust and able to handle high dimensionality.
It achieves comparable model quality when compared with
the original oKDE implementation while needing significantly
less memory and computational time. The numerical stability
improvements provide xoke++ the ability to cope with non-
normalized data and achieve a median classifier accuracy of
79.6%, which compares with 68.9% of the original oKDE
implementation. This represents a 15.5% median improvement
over the baseline approach. Compared to the implementation
used in the state of the art oKDE papers, xoke++ is up to 40
times faster, needs 90% less memory, has greater numerical
robustness, and produces, on average, models with higher
quality. Furthermore, our implementation, by being written in
a object oriented language presents desirable properties such
as extensibility and flexibility. This allow for extra research
on extending the algorithm to be performed with less effort.
One example is the diagonal covariance matrices, which were
easily implemented and provide aditional efficiency in time and
memory usage while sacrificing little model quality. Although
our models discriminative power is slightly inferior to the
discriminative approach of OISVM, our implementation is
more stable and computationaly efficient.

With this implementation, it is now possible to apply the
online kernel density estimation approach in high dimensional
data. This has direct implications to fields such as sensor
management [25] and big data, where it now becomes possible
to continuously capture and model high dimensional data sam-
ples using the KDE approach. The xokde++ implementation
has also shown dramatic computational performance improve-
ments over the baseline oKDE. Even so, there is still room for
improvement as some of the components of the algorithm, such



as bandwidth computation and model compression, are serious
bottlenecks. This issue is particularly evident when working
with high dimensions.

Future lines of work include both computational per-
formance and numerical stability improvements. Regarding
computational performance, in many applications using dense
matrices is inefficient, especially in high dimensional tasks
where the feature space is very sparse. One way to avoid this is
to use approaches that make use of the sparsity of the feature
space [26], [27], [28]. On the numerical stability two main
lines can be followed. First, we could avoid correcting the
degenerate covariances, which always introduces some ✏ error.
For this we could use the degenerate Gaussian probability den-
sity function and computing the pseudo-inverse and pseudo-
log-determinant [29]. Secondly we could to experiment with
Toeplitz covariance matrices [30], [31]. However, using sparse
or Toeplitz matrices may cause problems in the estimation of
the log-determinant. Cai et. al. [32] approach the problem of
estimating of the log-determinant in sparse matrices and prove
that consistent estimation of the log-determinant is not possible
when p > n, where p is the number of dimensions and n the
sample size.
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Dataset xokde++ ⇢ xokde++/diag ⇢ oKDE OISVM ⇢
Iris 0.5 ± 0.1 11.0 0.1 ± 0.02 34.2 5.0 ± 0.7 0.2 ± 0.1 26.7
Yeast 39.4 ± 3.2 4.5 6.5 ± 0.7 27.1 177.2 ± 8.1 7.7 ± 0.3 23.1
Pima 16.9 ± 2.1 7.9 3.3 ± 0.3 40.1 133.9 ± 2.3 1.5 ± 0.4 90.1
Winequality-red 61.0 ± 7.7 5.4 14.4 ± 0.7 22.6 326.4 ± 27.5 10.6 ± 1.8 30.7
Winequality-white 130.7 ± 4.0 5.8 39.0 ± 1.7 19.6 764.1 ± 51.3 37.2 ± 3.6 20.5
Wine 3.0 ± 0.5 3.2 0.5 ± 0.1 21.4 9.7 ± 0.6 0.3 ± 0.1 29.4
Letter 2119.0 ± 66.7 3.0 191.7 ± 3.5 33.7 6452.9 ± 191.9 5225.4 ± 1341.0 1.2
Image Segmentation (seg) 296.8 ± 26.1 1.7 45.0 ± 6.1 11.5 515.7 ± 21.5 84.1 ± 12.0 6.1
Steel 191.4 ± 36.5 8.7 ± 0.5 44.0 ± 2.9 0.02 ± 0.05 1834.1
Breast Cancer 52.6 ± 6.9 2.6 11.7 ± 1.1 11.6 135.6 ± 11.2 0.6 ± 0.1 221.8
Skin 572.9 ± 204.5 11.5 192.2 ± 40.9 34.2 6565.1 ± 1471.0 10522.5 ± 2144.0 0.6
Covtype 9803.8 ± 1614.9 2.6 1156.6 ± 124.5 22.2 25713.3 ± 2081.3 — —

TABLE IV. RESULTS FOR TIME PERFORMANCE ALONG WITH ± ONE STANDARD DEVIATION. TIME IS PRESENTED IN SECONDS. SPEEDUPS OVER THE
BASELINE OKDE APPROACH ARE SHOWN IN COLUMN ⇢ .

Dataset xokde++ ⇢ xokde++/diag ⇢ oKDE OISVM ⇢
Iris 4.6 3.76% 4.5 3.68% 123.0 116.6 94.84%
Yeast 6.8 3.93% 5.8 3.35% 173.1 148.9 86.04%
Pima 6.2 3.94% 5.2 3.29% 157.5 124.8 79.25%
Winequality-red 8.1 5.60% 6.2 4.24% 145.4 162.2 111.53%
Winequality-white 10.3 5.05% 8.3 4.08% 204.3 228.4 111.79%
Wine 6.3 4.38% 4.8 3.32% 144.3 120.2 83.32%
Letter 42.6 9.83% 23.2 5.36% 433.3 1823.9 420.94%
Image Segmentation (seg) 15.7 7.72% 7.7 3.75% 203.9 192.3 94.33%
Steel 10.5 5.77% 7.2 3.97% 181.3 194.5 107.29%
Breast Cancer 10.6 5.50% 6.6 3.40% 193.1 141.8 73.43%
Skin 83.1 9.10% 83.2 9.11% 913.3 2255.1 246.93%
Covtype 361.2 7.13% 360.4 7.12% 5064.8 — —

TABLE V. RESULTS FOR MEMORY PERFORMANCE ALONG WITH RELATIVE USAGE COMPARED TO THE BASELINE OKDE APPROACH, SHOWN IN
COLUMN ⇢. MEMORY IS PRESENTED IN MEGABYTES.

Dataset xokde++ xokde++/diag

acc K -L time mem acc K -L time memory AAccD K diff TS mem use
Iris 96.4% 28 7.4 0.5 4.6 95.0% 22 3.3 0.1 4.5 -1.4% -7 3.1 97.9%
Yeast 49.7% 31 -13.2 39.4 6.8 48.1% 30 -14.3 6.5 5.8 -1.6% -1 6.0 85.2%
Pima 67.8% 62 29.3 16.9 6.2 70.1% 42 27.6 3.3 5.2 2.3 % -21 5.1 83.5%
Winequal-red 62.0% 39 -0.2 61.0 8.1 54.6% 53 0.2 14.4 6.2 -7.4% 14 4.2 75.8%
Winequal-white 49.9% 31 0.5 130.7 10.3 42.4% 54 1.6 39.0 8.3 -7.5% 22 3.4 80.8%
Wine 97.7% 44 51.1 3.0 6.3 98.5% 44 33.0 0.5 4.8 0.8 % 0 6.6 75.8%
Letter 95.8% 65 17.9 2119.0 42.6 93.4% 42 19.9 191.7 23.2 -2.4% -23 11.1 54.5%
Image Seg. 91.5% 49 25.7 296.8 15.7 89.4% 51 31.0 45.0 7.7 -2.2% 2 6.6 48.7%
Steel 31.9% 8 – 191.4 10.5 56.9% 20 85.2 8.7 7.2 24.9% 12 22.0 68.8%
Breast Cancer 94.8% 40 -25.6 52.6 10.6 96.2% 153 -16.4 11.7 6.6 1.5 % 113 4.5 61.8%
Skin 99.6% 8 13.5 572.9 83.1 99.4% 10 13.9 192.2 83.2 -0.1% 3 3.0 100.1%
Covtype 52.0% 18 51.9 9803.8 361.2 51.6% 17 55.9 1156.6 360.4 -0.4% -2 8.5 99.8%

TABLE VI. COMPARISON OF THE EFFECT OF USING DIAGONAL COVARIANCES ON ACCURACY (ACC), NUMBER OF COMPONENTS IN THE MODEL (K),
NEGATIVE LOG-LIKELIHOOD (-L), TIME, AND MEMORY. THE LAST FOUR COLUMNS PRESENT THIS COMPARISON. A NEGATIVE VALUE ON THE ABSOLUTE
ACCURACY DIFFERENCE (AACCD) MEANS A LOSS IN ACCURACY. THE TIME SPEEDUP (TS) COLUMN REPRESENTS THE SPEED UP, WHERE A VALUE OF 6

MEANS THE PROGRAM RAN 6 TIMES FASTER. THE MEMORY USE COLUMN DISPLAYS THE RELATIVE MEMORY USAGE OF USING DIAGONAL COVARIANCES
VS FULL. A VALUE OF 80% MEANS THAT THE DIAGONAL APPROACH USED 80% OF THE MEMORY USED BY THE FULL COVARIANCE APPROACH.


