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That day, for no particular reason, I

decided to go for a little run. So I

ran to the end of the road. And

when I got there, I thought maybe

I’d run to the end of town. And

when I got there, I thought maybe

I’d just run across Greenbow

County. And I figured, since I run

this far, maybe I’d just run across

the great state of Alabama. And

that’s what I did. I ran clear across

Alabama. For no particular reason,

I just kept on going. I ran clear to

the ocean. And when I got there, I

figured, since I’d gone this far, I

might as well turn around, just

keep on going. When I got to

another ocean, I figured, since I’d

gone this far, I might as well just

turn back, keep right on going.

- Forrest Gump



Sumário

O rápido crescimento do conteúdo de vı́deo em plataformas como o YouTube levou a um in-

fluxo de dados multimedia, apresentando desafios computacionais para o seu armazenamento,

navegação, indexação, recuperação e compartilhamento. Além disso, o estudo das emoções em

conteúdo multimedia tem aplicações promissoras em vários setores, incluindo publicidade e

apresentação de conteúdo personalizado a um utilizador. O estado da arte também tem vindo

a avançar cada vez mais nos processos criativos orientados por IA, principalmente na indústria

cinematográfica.

Ao combinar o poder expressivo de filmes e música, a abordagem proposta visa capturar

a essência de um filme, evocando sentimentos nostálgicos, através da geração automática de

um tributo ao filme. O processo tradicional de criação destas homenagens é demorado e man-

ual, exigindo meticulosa edição e seleção de cenas, músicas e efeitos visuais. Automatizar

a geração de tributos a filmes democratiza a capacidade de homenagear obras-primas cine-

matográficas, promove uma apreciação mais profunda da cultura cinematográfica e contribui

para a preservação e divulgação de filmes influentes para as gerações futuras.

Este trabalho combina algoritmos de segmentação de áudio e vı́deo, vários modelos de

aprendizagem profunda e processamento de linguagem natural para propor uma ferramenta

capaz de gerar tributos de filmes emocionalmente coerentes automaticamente.





Abstract

The rapid growth of video content on platforms like YouTube has led to an influx of multimedia

data, posing computational challenges for storage, browsing, indexing, retrieval, and sharing.

Beyond that, the study of emotions in multimedia content has promising applications in vari-

ous industries, including advertising and personalized multimedia content. The research also

advances AI-driven creative processes, particularly in the film industry.

By combining the expressive power of movies and music, the proposed approach aims to

capture the essence of a movie and evoke nostalgic sentiments through the automatic genera-

tion of a movie tribute. The traditional process of creating these tributes is time-consuming and

manual, requiring meticulous editing and selection of scenes, music, and visual effects. Au-

tomating the generation of movie tributes democratizes the ability to pay homage to cinematic

masterpieces, fosters a deeper appreciation of film culture, and facilitates the preservation and

celebration of influential movies for future generations.

This work combines audio and video segmentation algorithms, various deep learning

models, and natural language processing to propose a tool to generate emotionally resonant

movie tributes automatically.
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Transformadores

Mecanismos de Atenção

Keywords

Computational Creativity

Audio Segmentation

Video Segmentation

Generation of Movie Tributes

Video Summarization



BERT for Text Extractive Summarization

Affective Audio-visual Correspondence Learning

Music Segmentation

Audio and Video data processing

Transformers

Attention Mechanisms



Contents

1 Introduction 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.2 Problem Formulation & Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

1.3 Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 Background and Related Work 5

2.1 Conceptual Approach on Video Summarization . . . . . . . . . . . . . . . . . . . 5

2.1.1 Hierarchical Structure of a Video . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.2 Structure of a Video Summary . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.1.3 Main Challenges . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.4 General Framework for Video Summarization . . . . . . . . . . . . . . . . 8

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1 Video Summarization Techniques . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.1.1 Paradigm shift in Video Summarization Techniques . . . . . . . 11

2.2.1.2 Deep Learning in Video Summarization . . . . . . . . . . . . . . 13

2.2.2 Extractive Text Summarization Techniques . . . . . . . . . . . . . . . . . . 27

2.2.2.1 Classical Approaches . . . . . . . . . . . . . . . . . . . . . . . . . 27

2.2.2.2 BERT for Extractive Text Summarization . . . . . . . . . . . . . . 28

2.2.3 Music - Video Retrival . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3.1 Emotion Representations . . . . . . . . . . . . . . . . . . . . . . . 32

i



2.2.3.2 Available Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . 32

2.2.3.3 EmoMV - Datasets and Proposed Model . . . . . . . . . . . . . . 33

2.3 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3 Generation Of A Movie Tribute 45

3.1 Music Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.1 Music Breakingpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46

3.1.2 Embedding extraction of the Segmented Music Clips . . . . . . . . . . . . 48

3.2 Movie Branch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.1 Movie Scenes Breakingpoints . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.2.2 Highlights Selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

3.2.2.1 Subtitled Scenes Selection . . . . . . . . . . . . . . . . . . . . . . 50

3.2.2.2 No-Subtitled Scenes Selection . . . . . . . . . . . . . . . . . . . . 50

3.2.3 Embedding extraction of the Selected Movie Clips . . . . . . . . . . . . . . 51

3.2.4 Model Outputs Processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Post-production . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

3.4 Architecture and User Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

4 Experimental Setup 59

4.1 Dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5 Conclusions and Future Work 67

5.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

ii



List of Figures

2.1 Hierarchical structure of a video. Tiwari and Bhatnagar (2021) . . . . . . . . . . . 6

2.2 General framework for Dynamic Summary generation. Tiwari and Bhatnagar

(2021) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.3 An unrolled RNN. Olah (2015) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.4 The LSTM unit. K. Zhang, Chao, Sha, and Grauman (2016b) . . . . . . . . . . . . 15

2.5 The vsLSTM model for video summarization. Each LSTM block is an LSTM unit,

shown in Fig. 2.4. K. Zhang et al. (2016b) . . . . . . . . . . . . . . . . . . . . . . . 16

2.6 The diagram of the proposed HSA-RNN. B. Zhao, Li, and Lu (2018) . . . . . . . . 17

2.7 Schematic representation of VAE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.8 Schematic representation of GAN. . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.9 Adversarial LSTM Networks proposed. Mahasseni, Lam, and Todorovic (2017) . 21

2.10 Scheme of the training process of Deep Summarization Network (DSN) rein-

forcement learning. Zhou, Qiao, and Xiang (2018) . . . . . . . . . . . . . . . . . . 21

2.11 Scheme of the AVS framework. Ji, Xiong, Pang, and Li (2019) . . . . . . . . . . . . 23

2.12 Diagram of VASNet network attending sample xt. Fajtl, Sokeh, Argyriou, Mon-

ekosso, and Remagnino (2019) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

2.13 The Transformer - model architecture. Vaswani et al. (2017) . . . . . . . . . . . . . 25

2.14 Overview of CLIP-It. Narasimhan, Rohrbach, and Darrell (2021) . . . . . . . . . . 27

2.15 MLM - Masked Language Modeling. . . . . . . . . . . . . . . . . . . . . . . . . . . 30

2.16 NSP - Next Sentence Prediction. Devlin, Chang, Lee, and Toutanova (2018) . . . 30

iii



2.17 The Modified Feature AttendAffectNet employs dimension reduction by pass-

ing the feature vectors V through fully connected layers with eight neurons each,

obtaining a set of dimension-reduced feature vectors V̂ . These vectors then go

through N identical layers, each containing a multi-head self-attention mech-

anism and a feed-forward layer. The resulting stack outputs encoded feature
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1Introduction
There should be no boundaries to human endeavor. We are all different. However bad life may

seem, there is always something you can do, and succeed at. While there’s life, there is hope.

– Stephen Hawking, ”The Theory of Everything”

In filmmaking, tributes play a significant role in honoring the legacy of influential movies

and their creators. A tribute is a heartfelt homage, allowing audiences to revisit beloved films’

remarkable moments, themes, and artistic achievements. Traditionally, creating such tributes

required extensive manual effort, often involving meticulous editing and selection of scenes,

music, and visual effects. This work aims to propose a pipeline for the automatic generation of

compelling and emotionally resonant movie tributes.

Over the years, through the advancements of the Internet and social networking sites, Hu-

mankind has been experiencing a massive influx of multimedia, particularly video content.

Considering YouTube as an example, over 500 hours of video content are currently uploaded

to the platform every minute. Entertainment, education, sports, news, and general users or

consumer videos are some of the different domains contributing to the fast-growing video

content. Nevertheless, while big video data is an excellent source of information discovery,

the computational challenges are becoming more demanding and unparalleled. This type of

information is typically large, and storing, browsing, indexing, retrieving, and sharing large

amounts of data are not trivial tasks. Furthermore, processing such large amounts of data re-

quires significant time and hardware storage. As a result, efficient techniques are needed to

deliver the content in a compact format while maintaining the context and the most critical

aspects. Intelligent algorithms for different kinds of video processing, e.g., summarization,

retrieval, recognition, and others, (re-)emerge as a pressing need.

Being a movie tribute a summary of a movie, we take advantage of the recent discoveries to

present an approach that combines computer vision, audio analysis, natural language process-

ing, and deep learning techniques to automatically generate tributes that capture the essence
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of a movie and evoke nostalgic sentiments.

1.1 Motivation

Usually, the way humans naturally communicate and express emotions is multimodal

(Morency, Mihalcea, & Doshi, 2011). That means we can express and apprehend emotions in

various ways (verbally, visually, and others). What is inspiring is that Humankind developed

the capability of creating tools that help us perform or improve the performance of a given task.

Because of our need and thrive on connecting and expressing ourselves amongst each other,

we used this proficiency to create tools to communicate more efficiently at a larger scale (big-

ger audiences) through creating pieces of art, music, movies, and others. This phenomenon has

been the concern and the research focus of many psychologists (Fernández-Aguilar, Navarro-

Bravo, Ricarte, Ros, & Latorre, 2019). Also, more broadly, over the last three decades, interest in

the study of emotions has increased notably, focusing both on the construct itself and its inter-

action with other concepts such as cognition, behavior, personality, and physiology (Kreibig,

Samson, & Gross, 2013; Kuo, Neacsiu, Fitzpatrick, & MacDonald, 2014; Vianna, Weinstock,

Elliott, Summers, & Tranel, 2006).

The research on emotions in multimedia content is also very promising to the industry. For

instance, recognizing the continuous dynamic emotion evoked by movies can be used to build

better multimedia intelligent applications, such as computational affective video-in-video ad-

vertising and personalized multimedia content (Yadati, Katti, & Kankanhalli, 2013; Aditya,

Manvitha, Samyak, & Shamitha, 2021), to create automatic summaries and adaptive playback

speed adjustment for long videos.

This thesis explores these concepts, resorting to the conjunction of movies and music,

specifically through the automatic generation of movie tributes.

1.2 Problem Formulation & Objectives

As described in a previous iteration of this topic by Aparı́cio (2015), a movie tribute consists of

a short music video containing essential parts of the movie playing along with the specified song. The

length of the video corresponds to the song’s length. By coordinating two very powerful tools
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for human expression (music and movies), the purpose of a movie tribute consists of reliving

emotions from the movie quickly and effectively. There are videos of this kind on YouTube, made manually

by people who long to gather their most meaningful scenes to remember later a movie that they have seen

and enjoyed.

This work will focus on creating a framework to generate a movie tribute taking advan-

tage of recent developments. The primary objective is to develop a robust framework to au-

tomatically select and assemble scenes from a given movie into a given musical composition,

generating a cohesive and emotionally engaging movie tribute.

In order to achieve this, a set of milestones were defined as follows:

• 1) Exploration of the recent advancements in general video summarization techniques:

Movies can be described as long videos; therefore, to better comprehend the semantics

and internal interactions of this kind of structure, we must first look at how the problem of

summarization is being addressed in the corresponding shorter format (videos). Through

this step, we will learn the intuition behind the current methodology for selecting what

is essential to keep in a summary and what is currently used for feature extraction and

some video segmentation techniques.

• 2) Exploration of the recent advancements in extractive text summarization techniques:

As done by Aparı́cio (2015), in order to reduce the processing time related to the movie,

we will also focus on how to retrieve the movie highlights by applying a text summariza-

tion technique to the subtitles corpus of the movie.

• 3) Exploration of the recent advancements in affective music-video retrieval tech-

niques: The produced movie tribute should carry emotional coherence between the

movie and music segments.

• 4) Implementation.

Ultimately, this research aims to contribute to advancing AI-driven creative processes,

specifically in the film industry. By automating the generation of movie tributes, we strive

to democratize the ability to pay homage to cinematic masterpieces, fostering a deeper appre-

ciation of film culture and facilitating the preservation and celebration of influential movies for

future generations. Unlocking an intuitive and efficient way to summarize a movie accordingly
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to a specific soundtrack would have an enormous impact on the creation of movie trailers, for

example, which are even more impactful in the industry.

1.3 Outline

The thesis is organized as follows:

• Chapter 2 presents a Conceptual Approach on Video Summarization for a better understand-

ing of the critical concepts related to general video summarization. These concepts in-

volve the Hierarchical Structure of a video, the Structure of a Video Summary, the Main

Challenges related to this task, and a General Framework for Video Summarization. We also

present the existing research on the fields used in the proposed approach for this work:

general video summarization, extractive text summarization, and affective music-video

retrieval;

• Chapter 3 presents our proposed solution, encompassing a detailed explanation of the

movie and music streams’ data processing, content selection, emotional coherence, and

post-production concerns;

• Chapter 4 provides an overview of the dataset utilized in our experiments, as well as the

respective results and further discussion;

• Chapter 5 presents our overall conclusions and directions for further research and devel-

opment.



2Background and Related

Work

Our lives are defined by opportunities, even the ones we miss.

– Benjamin Button, ”The strange case of Benjamin Button”

This chapter presents a Conceptual Approach on Video Summarization for a better understand-

ing of the critical concepts related to general video summarization. These concepts involve the

Hierarchical Structure of a video, the Structure of a Video Summary, the Main Challenges related to

this task, and a General Framework for Video Summarization.

Further, we present the existing research on the fields used in the proposed approach for

this work (chapter 1.2): general video summarization, extractive text summarization, and af-

fective music-video retrieval.

2.1 Conceptual Approach on Video Summarization

The evolution of technology and the way it blends into our day-to-day basis led to extreme

ease in creating video content. However, with the growth of the generation and availability

of this media, there is a direct correlation between the need for new and more efficient ways

to handle this type of data. That is why research on this topic has seen exponential growth

over the years. Efficient video summarization techniques can facilitate efficient storage, quick

browsing, indexing, fast retrieval, and quick content sharing (Tiwari & Bhatnagar, 2021).

For this section, we inspired ourselves on the structure and research highlights presented in

the recent survey regarding video summarization techniques by Tiwari and Bhatnagar (2021).

This survey outlines the existing video summarization frameworks and a comprehensive view

of the existing approaches and techniques.
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2.1.1 Hierarchical Structure of a Video

A video stores spatiotemporal information. In order to be able to manipulate and rearrange

this information, we need to define some key concepts in the video structure. We followed the

concepts presented by Tiwari and Bhatnagar (2021):

• Frame: The elementary unit of a video that is displayed in sequential order (individual

images of a video stream).

• Shot: Collection of frames captured in an uninterrupted time interval with a single cam-

era.

• Scene: Several shots representing a part of an event’s complete sequence.

The final video comprises an appropriate combination of the scenes in a timeline, produc-

ing a story with its context.

Figure 2.1: Hierarchical structure of a video. Tiwari and Bhatnagar (2021)

2.1.2 Structure of a Video Summary

Video summarization techniques aim to produce a compact representation of a given video,

keeping the most relevant information intact. How this compact information is presented to

the user can vary in different ways depending on the purpose of the summarization task. For

example, we could summarize a Youtube video’s content in text format to add to its descrip-

tion or in the format of isolated keyframes to present to the user while browsing. The different

applications of video summarization lead to the absence of a standard definition for what kind



2.1. CONCEPTUAL APPROACH ON VIDEO SUMMARIZATION 7

of structures should be included or excluded from a video summary. Money and Agius (2008)

identified the audio-visual cues as follows. Keyframe cues are the most representative frames

extracted from a video sequence and must be presented in temporal order to preserve context.

Video Segment cues are the essential continuous parts of the original video, being considered

an extension of keyframe cues that generally preserve both the motion and audio elements.

Graphical Cues use visual elements and syntax as a supplement to other cues, presenting an

additional level of detail (e.g., the in-video text identification of the action that is being pre-

sented at that specific moment). Textual Cues summarize the content of the video via textual

descriptors.

As mentioned before, there are multiple types of video summaries. Nonetheless, if the

generated summary maintains the video format, a general mathematical representation of the

problem can be formulated as follows:

Let V be the video with n frames in sequence. Then, the summarization video, S, is a collection of

m keyframes, not necessarily consecutive, but in temporal order.

V = {F1, F2, F3, ......., Fn} (2.1)

S = {Fx1 , Fx2 , ......., Fxm | 1 ≤ xi ≤ n and m ≪ n} (2.2)

It is essential to mention here that there is no specified need to present the video segments

in the temporal order for our specific problem of generating movie tributes. Music/video syn-

chronization and coherence must be the top priority.

2.1.3 Main Challenges

Summarizing a video stream presents several challenges. The sequential nature of a video

makes it a more complex type of content than singular images. The spatiotemporal depen-

dencies of this type of data must be taken into account to produce a summary that properly

maintains the context of the original video.

A video agglomerates a wide range of semantics in various ways, such as still and moving

images, sound, music, and text. This multimodal nature makes this task much more complex
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than analyzing text documents or single images (Money & Agius, 2008).

Video summarization is a subjective task. Different users may have different opinions and

preferences over the summaries, all being valid (Otani, Nakashima, Rahtu, & Heikkilä, 2019).

This hinders the comparison of a generated summary with well-defined ground truth.

In order to identify which frames or parts of a video will be present in the summary, an

importance score must be generated. This score depends on the type of summary, user require-

ments, and genre of the videos. Since what defines importance may vary for different persons,

determining what is essential is also a highly subjective task (Otani et al., 2019).

2.1.4 General Framework for Video Summarization

B. T. Truong and Venkatesh (2007) analyzed the concept of video abstraction as a mechanism

for generating a summary of a video, which can either be a sequence of stationary images (keyframes)

or moving images (video skims), corresponding to Static and Dynamic Summaries. Apart from

those, other types of video summaries can be generated depending on the purpose of the task

they are aimed for. Although they differ in structure, all of them must be able to carry the

semantic content and maintain the overall context of the original video. Therefore, different

proposed techniques are addressed in the literature according to different kinds of summaries.

A Static Summary is a collection of singular frames (keyframes) extracted from an original

video depending upon the summarization criteria (Kanehira, Van Gool, Ushiku, & Harada,

2018; Khan, Shao, Ali, & Tumrani, 2020; T. Liu & Kender, 2002b; Money & Agius, 2008; Zhou

et al., 2018). This summary is structured as a set of images; therefore, it does not contain audio

cues and may lack continuity. However, its generation reveals efficiency in computational time

and memory (Sreeja & Kovoor, 2019).

A Dynamic Summary is a concatenation of different segments of the original video

(Potapov, Douze, Harchaoui, & Schmid, 2014; Sreeja & Kovoor, 2019; X. Zhu, Loy, & Gong,

2016). This kind of summary may contain audio cues, provide the user with more information,

and exhibit continuity.

An Image Summary extracts a single frame or a combination of frames from the original

video and gathers them all into a single image (Chen, Lu, & Hu, 2012). These summaries rep-

resent the flow of events or create what is referred to as a schematic storyboard by annotating
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the image with arrows and text describing the respective motion.

A Text Summary is a textual description of the original video sequence (Sah et al., 2017;

Dilawari & Khan, 2019). These types of summaries are generated with the use of Natural

Language Processing (NLP) techniques. Even though they may be efficient in terms of storage

and computational cost, they do not include audio and visual cues, risking not expressing the

complete information derived from these components.

A Hierarchical Summary is a collection of summaries from the same original video dis-

tributed on different levels of abstraction. These levels increase in detail (number of selected

frames) from the highest to the lowest one (Herranz & Martinez, 2010; X. Zhu, Wu, Fan, Elma-

garmid, & Aref, 2004; X. Zhu, Elmagarmid, Xue, Wu, & Catlin, 2005). The advantage of this

kind of summary is that it can assist the users in determining what is appropriate by giving the

user various levels of summary (Tiwari & Bhatnagar, 2021).

A Multi-view Summary refers to summaries generated out of a set of different videos

simultaneously recorded or captured by more than one camera for the same purpose (Hussain

et al., 2021; Panda & Roy-Chowdhury, 2017; Fu et al., 2010). These summaries are beneficial for

surveillance and sports videos.

The type of summary we aim to produce with this work is a Dynamic Summary. The

general framework to generate this type of summary out of the existing video sequence is

shown in Fig. 2.2.

Figure 2.2: General framework for Dynamic Summary generation. Tiwari and Bhatnagar (2021)

The process consists of three phases, as follows. 1) Video Segmentation divides the orig-
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inal video stream into smaller parts that can be comprehended and processed independently.

Each of these parts is a composition of sequential frames defining a specific activity or mo-

ment and correctly carrying its meaning. For structured videos, where the different segments

are easy to locate, this process identifies well-defined shots and scenes from the video stream.

2) Importance Score Prediction is considered a crucial step as it aims to attribute a score to

each segmented unit of the video that defines what will be present in the summary. The chal-

lenge of this step is due to the subjectivity related to defining what is essential, as this criterion

is not always the same. The formulation of importance may vary depending on the applica-

tion domain, user preferences, or specific requirements. Some previous works have focused

on visual ”interestingness”, compactness, and diversity to produce this score (Gygli, Grabner,

Riemenschneider, & Van Gool, 2014; Gygli, Grabner, & Van Gool, 2015; K. Zhang, Chao, Sha,

& Grauman, 2016a; B. Zhao & Xing, 2014; Zhou et al., 2018; Atencio, German, Branch, & Del-

rieux, 2019). 3) Segment Selection removes the redundant frames and selects the segments in

the intended summary based on the computed importance scores.

2.2 Related Work

By looking at the research community, we can find significant contributions related to the fields

we need to consider to generate a movie tribute. In this section, we compiled an overview of

the current state-of-the-art related to the topics of Video Summarization Techniques, Extractive Text

Summarization Techniques, and Music - Video Retrival.

2.2.1 Video Summarization Techniques

The majority of the techniques for automatic video summarization fall into two broad cate-

gories. Unsupervised approaches are based on techniques that rely on manually designed

criteria to prioritize and select frames or sub-shots from videos (H. J. Zhang, Wu, Zhong,

& Smoliar, 1997; Mundur, Rao, & Yesha, 2006; Lee, Ghosh, & Grauman, 2012; Ngo, Ma, &

Zhang, 2003; Lu & Grauman, 2013; Hong et al., 2009; Khosla, Hamid, Lin, & Sundaresan, 2013;

T. Liu & Kender, 2002a; Ma, Lu, Zhang, & Li, 2002; De Avila, Lopes, da Luz Jr, & de Albu-

querque Araújo, 2011; Furini, Geraci, Montangero, & Pellegrini, 2010; Y. Li & Merialdo, 2010;

Potapov et al., 2014; Morere, Goh, Veillard, Chandrasekhar, & Lin, 2015; G. Kim & Xing, 2014;



2.2. RELATED WORK 11

B. Zhao & Xing, 2014; Song, Vallmitjana, Stent, & Jaimes, 2015; Chu, Song, & Jaimes, 2015). Su-

pervised methods make use of techniques that leverage human-edited summary examples (or

frame importance ratings) to learn how to summarize novel videos (B. Gong, Chao, Grauman,

& Sha, 2014; Gygli et al., 2015; K. Zhang et al., 2016a; Gygli et al., 2014; Chao, Gong, Grauman,

& Sha, 2015).

The most recent studies show that machine learning techniques yield better results than

traditional methods (presented in Section 2.2.1.1). At the time of the writing of this document,

Deep Learning models are also producing efficient results, and the current technology is be-

ing explored extensively by researchers to produce better results (Tiwari & Bhatnagar, 2021).

This is why our focus in this Section will be more on exploring deep learning approaches to

video summarization. Nevertheless, an overview of the evolution of video summarization

techniques before introducing deep learning-based architectures is presented below.

2.2.1.1 Paradigm shift in Video Summarization Techniques

Over the years, the video summarization process and techniques have seen many advance-

ments and a broad paradigm shift (Sharghi, Gong, & Shah, 2016). As previously said, selecting

keyframes is regarded as the most crucial stage in any approach, with the goal of obtaining

a summary based on the video’s semantic information. The earlier techniques mainly used

low-level appearance cues, motion cues, and graph modeling to identify the key frames from

a video sequence such that the identified key frames are important, diverse, and representa-

tive (Tiwari & Bhatnagar, 2021). It is up to the programmer to measure the importance and

diversity of the key frames through the cues.

Rav-Acha, Pritch, and Peleg (2006) presents a dynamic video synopsis, where most of

the activity in the video is condensed by simultaneously showing several actions, even when

they initially occurred at different times. To achieve this type of video synopsis, the authors

present two approaches. The first approach uses optimizations on Markov Random Fields

(Kolmogorov & Zabin, 2004) and a 2D graph where each node corresponds to a spatial location

in the synopsis movie. The second approach starts by detecting the moving objects and then

the optimization is performed. There are other object-based video summary methods in the

literature (C. Kim & Hwang, 2000; Ferman & Tekalp, 1997; Stefanidis, Partsinevelos, Agouris,

& Doucette, 2000), and they all use the detected objects to select significant frames. Goldman,
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Curless, Salesin, and Seitz (2006) also uses these earlier techniques by presenting a method for

visualizing short video clips in a single static image using the visual language of storyboards.

These schematic storyboards are assembled from multiple input frames and annotated using

outlines, arrows, and text describing the motion in the scene.

Later on, high-level supervised information, such as rich web images, was addressed, and

weakly supervised priors were utilized to capture the user-oriented value of a video’s visual

content. Khosla et al. (2013) had the idea of using web images as a prior to facilitating the

creation of summaries of user-generated videos. Their intuition was that people tend to take

pictures of objects to capture them in a maximally informative way. As a result, such photos

with specific objects could help identify the same set of objects in a video to produce a dedicated

summary. The authors aimed to collect cannonical viewpoints of various objects and connect

them to an object class (e.g. automobiles). Using these discovered viewpoints, they developed

a discriminative model that can recognize similar frames in a video that each capture a different

instance of the object class. These keyframes can be used to represent the video and summarize

its content. To do this, the authors proposed a variant of a multi-class Support Vector Machine

(SVM) (Crammer & Singer, 2001) framework that jointly discovers the canonical viewpoints as

well as learns their discriminative decision boundaries.

Another work on video summarization involving web content focused on generating sum-

maries from different large datasets of online images and videos. G. Kim, Sigal, and Xing (2014)

addressed this problem using Flickr images and YouTube videos. They started from the idea

that the characteristics of the two media types are different yet complementary to develop a fast

and easily-parallelizable approach for creating high-quality video summaries and novel struc-

tural summaries of online images as storyline graphs. The video summarization is achieved

by applying the diversity ranking algorithm proposed by G. Kim, Xing, Fei-Fei, and Kanade

(2011) on the similarity graphs between images and video frames.

Other techniques for video summarization have included Category and Domain-specific

summarization. For example, Potapov et al. (2014) proposed a category-specific summariza-

tion approach that performs the segmentation of the given video by considering general change

points in addition to shot boundaries, resulting in semantically-consistent segments, in contrast

to video-specific importance (Y. Liu, Zhou, Liu, De la Torre, & Liu, 2010; De Avila et al., 2011;

B. T. Truong & Venkatesh, 2007). After the segmentation, an SVM classifier that was trained on
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videos for the category at hand assigns importance scores to each segment and finally assem-

bles the segments with the highest scores.

Tiwari and Bhatnagar (2021) establish that the summarization process based on user pref-

erences is more prevalent and that Machine Learning and, more specifically, Deep Learning

techniques can be used to accomplish it. Machine Learning has proved to be beneficial for the

summarization process to yield better results compared to the traditional methods. Therefore,

a more detailed analysis of the advancements in video summarization using Deep Learning

techniques is presented in the next section.

2.2.1.2 Deep Learning in Video Summarization

Deep Learning concepts and architectures must be analyzed to understand the literature fur-

ther.

Movies and music are sequences. The context in each segment of these sequences depends

on the previously gathered knowledge. For example, it is unclear how a traditional neural

network could reason about previous events in the film to classify what is happening at a

given time. Because of this, the deep learning architectures that show better results in video

summarization are the ones dedicated to processing sequential data.

Long Short-Term Memory

Deep Neural Network (DNN) is a highly expressive model that can learn highly com-

plex vector-to-vector mappings. The Recurrent Neural Networks (RNN) is a DNN adapted

to sequence data, and as a result, the RNN is also highly expressive (Jozefowicz, Zaremba, &

Sutskever, 2015). RNNs are networks with loops in them, allowing information to persist. An

RNN can be thought of as multiple copies of the same network, each passing a message to a

successor (Olah, 2015).

Figure 2.3: An unrolled RNN. Olah (2015)
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This chain-like nature in Fig. 2.3 reveals that RNNs are intimately related to sequences

and lists. Therefore, RNNs have been used in various problems such as speech recognition,

language modeling, translation, image captioning, and others.

The concern regarding this architecture is that it is entirely possible for the gap between

the relevant information and the point where it is needed to become large enough that RNNs

become unable to learn to connect the information. This issue with the ”default” RNN architec-

ture, known as short-term memory, is caused by the well-known vanishing gradient problem,

which also occurs in other neural network architectures. As Phi (2018) explains, the training

process of an RNN uses an application of back-propagation called back-propagation through

time. By doing this, each node computes its gradient with respect to the effects of the gradients

in the node before it. Therefore, if the adjustment to the node before it is small, the adjustment

to the current node will be even more minor. As a result, the gradient values will exponentially

shrink as they propagate through each step. That causes the early nodes not to learn.

Hochreiter (1998) made a theoretical analysis of the problem of the vanishing gradients,

and some alternative methods were briefly discussed. Two specialized recurrent neural net-

works appeared: Long Short-Term Memory (LSTM) and Gated Recurrent Units (GRU).

LSTM is a particular type of RNN capable of learning long-term dependencies. The model

was introduced by Hochreiter and Schmidhuber (1997). Since then, many people have refined

and popularized it in the following work. The mechanisms behind this architecture are the cell

state and gates.

The cell state transfers relative information down the sequence chain, allowing for infor-

mation from the earlier time steps to make its way to the following time steps, reducing the

effects of short-term memory. Each LSTM cell adds or removes information to the cell state via

three different gates:

• Forget Gate: Decides what information from the previous hidden state and the current

input should be thrown away or kept;

• Input Gate: Responsible for updating the cell state, deciding what information is relevant

to add from the current step;

• Output Gate: Decides what the next hidden state, containing information on previous

inputs, should be.
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The conceptual diagram of an LSTM unit (Fig. 2.4) and its algebraic definitions (Eq. 2.3)

are presented below.

Figure 2.4: The LSTM unit. K. Zhang et al. (2016b)
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LSTMs can model dependencies with a data-dependent on/off switch, which is extremely

powerful for modeling sequential data (Graves, Mohamed, & Hinton, 2013). This architecture

has also been used in various image/video-related tasks (Xu et al., 2015; Jin, Fu, Cui, Sha, &

Zhang, 2015; Yao et al., 2015; Venugopalan et al., 2015, 2014).

Inspired by the success of applying LSTMs to structured prediction problems such as

speech recognition (L. Deng, Hinton, & Kingsbury, 2013; Graves et al., 2013; Graves & Jaitly,

2014) and image and video captioning (Donahue et al., 2015; Yao et al., 2015; Venugopalan et

al., 2015, 2014; Karpathy & Fei-Fei, 2015), K. Zhang et al. (2016b) proposed an LSTM-based

model for video summarization focused on keyframe and key subshot selection (Fig. 2.5). They

demonstrated that the sequential modeling aspect of LSTM is essential for video summariza-
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tion. The model’s memory cells are used to understand how storylines evolve, allowing it to

know when to ignore or incorporate prior occurrences while making decisions.

Figure 2.5: The vsLSTM model for video summarization. Each LSTM block is an LSTM unit,
shown in Fig. 2.4. K. Zhang et al. (2016b)

This model takes as input a sequence of extracted features (xi). It can model the temporal

interdependencies between the past and the future by using a Bidirectional Long Short-term

Memory (BiLSTM). A BiLSTM is composed of two LSTM layers that consume the input for-

ward and backward, respectively. The combination of hidden states and visual features passes

through an Multilayer Perceptron (MLP), obtaining a binary indicator vector (being selected or

not) or frame-level importance scores (yj).

To enhance the summary’s diversity, the authors further introduce the Determinantal Point

Process (DPP) algorithm to vsLSTM, called dppLSTM. This combination takes advantage of

LSTMs to measure which frames are essential to the summary and from the DPP to ensure

diversity, which can only be measured ”collectively”, not as independent or sequential frames.

The modeling advantage provided by the DPP has been exploited in other DPP-based sum-

marization methods (Sharghi et al., 2016; Sharghi, Laurel, & Gong, 2017; Kulesza & Taskar,

2011; Chao et al., 2015; K. Zhang et al., 2016a; B. Gong et al., 2014).

In another work that makes direct use of the LSTM architecture, B. Zhao et al. (2018) de-

veloped a structure adaptive video summarization approach that integrates shot segmentation

and video summarization into a Hierarchical Structure-Adaptive RNN, denoted as HSA-RNN.

As presented in Fig. 2.6, HSA-RNN has two layers composed of a BiLSTM.
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Figure 2.6: The diagram of the proposed HSA-RNN. B. Zhao et al. (2018)

The first layer was explicitly implemented to take advantage of the video structure. It corre-

sponds to a fixed-length sliding BiLSTM capable of moving along the video frames, attempting

to detect shot boundaries step by step. Once the shot boundaries are detected, the hidden states

corresponding to those locations are taken as the encoded shot features and input to the upper

layer. As stated by the authors, the intuition lying behind the sliding BiLSTM is that: 1) The

sliding operation enables short LSTM to process long videos. It avoids long temporal depen-

dency exploitation among thousands of frames, mitigating the vanishing gradient problem. 2)

The BiLSTM jointly captures the forward and backward information in frame sequence, which

can detect the shot boundary effectively. 3) The sliding BiLSTM processes only the local frames

at each step, which reduces the interference of irrelevant global information.

The second layer is designed to capture the forward-backward temporal dependencies

among shots and predict the probability of each shot being selected in the summary.

Generative Networks

Over the years, many techniques aiming to generate data similar to the input samples have

emerged. The primary principle behind generative networks is to capture the underlying dis-

tribution of the data. This distribution can not be observed directly and must be approximately

inferred from the training data. Overall, these networks can uncover underlying latent vari-



18 CHAPTER 2. BACKGROUND AND RELATED WORK

ables in a dataset.

Early deep generative approaches used Autoencoders (Hinton & Salakhutdinov, 2006).

These architectures are composed of two neural networks (encoder and decoder) that learn the

best encoding-decoding scheme using an iterative optimization process. At each step of the

training process, we feed the encoder with some data and compare the encoded-decoded out-

put with the original data, back-propagating the error through the architecture to update the

networks’ weights. The main goal of these networks is to compress the underlying distribution

into a lower-dimensional latent space by reducing the layer sizes continuously. This process

of ”compressing” the data is called dimensionality reduction. If the encoder and decoder ar-

chitectures have only one layer without non-linearity (linear autoencoder), then both parts are

simple linear transformations that can be expressed in matrices. In this case, we are looking for

the best linear subspace to project data on, with as little information loss as possible, just like

Principal Component Analysis (PCA) (Hotelling, 1933) does. The use of linear autoencoders

allows the newly generated features to be dependent (no orthogonality constraints), contrarily

to PCA. Indeed, several bases can be chosen to describe the same optimal subspace, implying

that several encoder-decoder pairs can give the optimal reconstruction error.

The objective is to find the pair encoder-decoder that keeps the maximum of informa-

tion when encoding and has the minimum of reconstruction error when decoding. Denot-

ing respectively E and D the families of encoders and decoders we are considering, then the

dimensionality reduction problem can be written as (e∗, d∗) = argmin(e,d)∈E×Dϵ(x, d(e(x)))

where ϵ(x, d(e(x))) defines the reconstruction error between the input data, x, and the encoded-

decoded data d(e(x)).

The original autoencoder architecture presented above does not consider the organization

of the latent space. This property turned out to be a significant problem if we want to use the

decoder of our autoencoder for generative purposes that require the latent space to be regular

enough. Kingma and Welling (2013) proposed a solution that avoids overfeating and ensures

that the latent space has suitable properties for the generative process. The Variational Autoen-

coder (VAE) (Fig. 2.7) adds a regularization term to the loss function. Instead of encoding an

input as a single point, it encodes it as a distribution over the latent space.

In VAEs, the loss function comprises a reconstruction term (which makes the encoding-

decoding scheme efficient) and a regularization term (responsible for making the latent space



2.2. RELATED WORK 19

Figure 2.7: Schematic representation of VAE.

regular).

To specifically generate new instances based on some data, a new framework for estimating

generative models via an adversarial process was proposed by Goodfellow et al. (2014): Gen-

erative Adversarial Networks (GAN). GANs are a way to make a generative model by having

two neural networks compete with each other (Fig. 2.8). The Generator network turns noise

into an imitation of the data to try to trick the Discriminator and the Discriminator network

tries to identify real data from fakes created by the Generator. The main goal is for the Gen-

erator to learn a function that transforms a simple distribution (white noise) into a complex

distribution, representing the desired data.

After training, it is possible to use the Generator network to create new data that’s never

been seen before.

Inspired by the research on these new technologies and the use of LSTMs in the HSA-

RNN (Fig. 2.6), Mahasseni et al. (2017) proposed a new architecture (Fig. 2.9) that uses the

unsupervised generative-adversarial learning to train the LSTMs.

This architecture starts by extracting deep features from a given frame using a Convolu-

tional Neural Network (CNN), specifically, GoogleNet (Szegedy et al., 2015). Then, the se-

quence of outputs of the CNN goes through the sLSTM for capturing long-range dependencies

among the frames and selecting a subset of these frames (attributing an importance score to

each frame), producing a new deep feature representing the input sequence.

The input sequence of frames’ features, x, is weighted with these importance scores st.
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Figure 2.8: Schematic representation of GAN.

Then the subset of frames for which st = 1 is forwarded to the eLSTM to encode the se-

lected frames to a deep feature e. The last component of the summarizer is the dLSTM, which

takes e as input, and reconstructs a sequence of features corresponding to the input video,

x̂ = x̂1, x̂2, ..., x̂M .

The discriminator’s (cLSTM) task is to distinguish between x and x̂ belonging to two

classes: ’original’ and ’summary’. The discriminator serves to estimate a representation er-

ror between the original video and the video summary. This way, the dLSTM and the cLSTM

form the GAN. The summarizer and discriminator networks are trained adversarially until the

discriminator cannot discriminate between the reconstructed videos from summaries and the

original videos.

Zhou et al. (2018) argued that the DPP-LSTM (the second iteration of the architecture pre-

sented in Fig. 2.5 proposed by K. Zhang et al. (2016b)) supervised learning cannot fully explore the

potential of deep networks for video summarization because there does not exist a single ground truth

summary for a video and that the adversarial nature of the architecture presented in Fig. 2.9

(Mahasseni et al., 2017) makes the training unstable, which may result in model collapse. This

way, the authors Zhou et al. (2018) proposed an approach (Fig. 2.10) that employs unsuper-

vised video summarization using a diversity-representativeness reward function to simulate

how people summarize films. The summaries are generated by predicting the probabilities
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Figure 2.9: Adversarial LSTM Networks proposed. Mahasseni et al. (2017)

that a given frame is a key-frame and then selecting summary frames based on this probability.

This methodology applies Reinforcement Learning (RL) to unsupervised video summariza-

tion. RL is the technique applied to an agent facing a problem by learning behavior through

trial-and-error interactions with a dynamic environment (Kaelbling, Littman, & Moore, 1996).

Figure 2.10: Scheme of the training process of Deep Summarization Network (DSN) reinforce-
ment learning. Zhou et al. (2018)

DSN has an encoder-decoder architecture. The encoder performs feature extraction from

the video frames using a CNN. The decoder is a BiLSTM. DSN receives a video as input and

passes it to the encoder-decoder model that outputs a sequence of binary variables, considered

the Actions, representing which parts of the video are selected as the Summary.

During training, DSN will receive a reward R(S) that evaluates the quality of generated

summaries. The objective of DSN is to maximize the expected rewards over time by producing
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high-quality summaries.

R(S) = Rdiv +Rrep (2.4)

The reward function is composed by two other that aim to measure Diversity (Rdiv) and

Representativeness (Rrep). Let the indices of the selected frames be γ = yi|ayi = 1, i = 1, ..., |γ|:

Rdiv =
1

|γ|(|γ| − 1)

∑
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Attention Mechanism

Up to this point, we have seen that LSTMs (and GRUs) provide a way to carry only rel-

evant information from one step to the next through gates. Although the longer the input

sequence length, the more difficult it is for the hidden vector to capture the context (Cho,

Van Merriënboer, Bahdanau, & Bengio, 2014; Koehn & Knowles, 2017).

In the book The Principles of Psychology by James (2007), the author wrote that Attention is the

taking possession by the mind, in clear and vivid form, of one out of what seem several simultaneously

possible objects or trains of thought. Focalization, concentration, of consciousness are of its essence.

Attention is a behavioral and cognitive process of selectively concentrating on specific parts

of information while ignoring others. For instance, if we want to guess which person is the

oldest in an image of a group of people, intuitively, we will not analyze all the aspects of the

image. Instead, perhaps we would look at the faces in the image for some specific features. It

was based on this notion that Bahdanau, Cho, and Bengio (2014) introduced the fundamental

concept of attention mechanism for neural networks. His work focused on NLP; therefore, the

attention mechanism appeared as an improvement over the encoder-decoder architecture for

neural machine translation systems.
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The use of Attention provides a way to build an architecture that consumes all hidden

states of the LSTM instead of using just the last hidden state as a proxy for the entire sentence.

This way, the context will not weaken through the sequence.

There are two main distinct attention algorithms, hard and soft. Xu et al. (2015) describe

both as follows. Soft Attention is when the context vector is computed as a weighted sum of

the encoder’s hidden states. Opposingly, Hard Attention uses attention scores to select a single

hidden state for the context vector. The challenge with this latest algorithm is that the func-

tion that selects the hidden state is not differentiable (e.g., argmax), leading to more complex

techniques than back-propagation to update the model’s weights.

Ji et al. (2019) utilized this mechanism to treat video summarization as a sequential

encoder-decoder problem and formulate it with an attention-based LSTM framework, the At-

tentive encoder-decoder networks for Video Summarization (AVS).

Inspired by the success of the Attention mechanisms in machine translation approaches

(Bahdanau et al., 2014; Luong, Pham, & Manning, 2015), the AVS is able to assign importance

weights to different shots/frames of the input instead of treating all the input ones equally.

The AVS employs an Attention mechanism in the encoder-decoder framework (Fig. 2.11).

Figure 2.11: Scheme of the AVS framework. Ji et al. (2019)

The encoder is a BiLSTM to encode the necessary information in sequence, considering the

temporal relation of video frames. The decoder is an LSTM with an attention mechanism that

allows the decoder to selectively focus on only a subset of inputs by increasing their attention

weights. Once obtained the predicted importance scores for all the frames,the shot boundaries

are defined by applying the Kernel Temporal Segmentation (KTS), proposed by Potapov et al.
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(2014), and the key segments selected.

Fajtl et al. (2019) argued that the use of encoder-decoder architectures has a significant

problem because of the fixed size of the latent space, completely independent from a possi-

ble variation in the input’s length. This ”bottleneck” implies a higher information loss for

longer sequences. To address this problem, the authors proposed a supervised keyshot-based

architecture (Fig. 2.12) that completely replaces the LSTM encoder-decoder network with soft

self-attention and a two-layer, fully connected network for regression of the frame importance

score.

Figure 2.12: Diagram of VASNet network attending sample xt. Fajtl et al. (2019)

The input to this architecture is a sequence of CNN feature vectors, extracted for each video

frame. The self-attention weight et,i is computed according to Luong et al. (2015):

et,i = s[(Uxi)
T (V xt)] t = [0, N), t = [0, N) (2.7)

The authors justify using Equation 2.7 of the multiplicative attention, opposing to additive

because it is easier to parallelize, and both formulas showed similar performance. The attention

vector et is then converted to actual probabilities through a softmax function representing the

importance of input features concerning the desired frame-level score at the time t. In the end,

a two-layer neural network performs the frame score regression.
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An interesting factor of this approach is that, even if the objective is keyshot summariza-

tion, the importance scores are attributed at a frame level. After that, the authors maximize the

total frame score within each keyshot for selecting the ones that will end up in the summary.

The keyshot boundaries are detected by the KTS method (Potapov et al., 2014).

Transformers

The Transformer architecture was introduced by Vaswani et al. (2017) in a paper called

Attention is all you need to improve the performance of deep learning NLP translation models

using attention mechanisms.

At its core, the Transformer is composed by a stack of encoders and decoders (Fig. 2.13).

The original architecture uses six of each.

Figure 2.13: The Transformer - model architecture. Vaswani et al. (2017)

In training, the input enters the Encoder consisting of a self-attention layer to compute the

relationship between each word of the input sequence and a Feed-forward layer. By stacking

multiple encoders on top of each other, the model can further encode the information where

each layer has the opportunity of learning different attention representations, potentially im-

proving the predictive power of the Transformer. The sequence that we are trying to obtain

enters the Decoder consisting of a first self-attention layer to compute the relationship between
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each word of the output sequence, a second encoder-decoder attention layer that aims to com-

pute the relation between the output of the self-attention layer below it and the encoded input

sequence, and a Feed-forward layer as well. Each stacked Decoder takes as inputs the multiple

outputs from the layers of encoders, allowing the model to focus on different combinations of

attention, once again, potentially improving the predictive power.

The Multi-Head Attention is a way to compute the Attention with a greater power of dis-

crimination by combining several similar Attention calculations performed in parallel.

Both inputs of the encoder and decoder stacks pass through a Positional Embedding layer

to obtain the position information of the inputs since the sequence is processed simultaneously,

contrarily to RNN architectures (LSTM and GRU).

The way these models are trained is as follows. The input sequence passes through a

positional embedding layer and enters the Encoder’s stack, which outputs an encoded input

representation. The target sequence also passes through a positional embedding layer and

enters the Decoder stack alongside the encoded representations of the input. The output will

be a sequence to be compared, via a Loss function, to the target one, generating gradients to

train the Transformer during back-propagation. As stated before, the complete target sequence

is fed to the Decoder, allowing it to access all the single inputs (past and future ones). However,

the goal is for the Decoder to predict the word based only on the past ones. Therefore, it uses

an attention mask in the self-attention layer to prevent the Decoder from ”peaking” ahead at

the rest of the target sentence when predicting the next word.

The steps are identical to the training process during inference, but we do not have a com-

plete sequence for the decoder. Therefore, at the start of the prediction, we use an empty se-

quence with only a start-of-sentence token; the decoder will predict a word at a time with the

concatenation of the previously predicted words until it predicts an end-of-sentence token.

Narasimhan et al. (2021) have proposed a multimodal summarization model, shown in Fig.

2.14, which takes a video and a natural language text as inputs to generate a summary of the

video conditioned by the text.

Note that, for generic video summarization, the text input is a system-generated video

description.

The authors formulate the video summarization task as a per-frame binary classification
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Figure 2.14: Overview of CLIP-It. Narasimhan et al. (2021)

problem. The image and text embeddings are extracted using pre-trained networks for each

purpose, respectively.

They modified the Multi-Head Attention described by Vaswani et al. (2017) to a Language-

Guided Multi-Head Attention to fuse information across the video and language modalities

efficiently and infer long-term dependencies across both. Besides, because the objective is for

all sentences of the text description to attend to all frames in the video, a single attention layer

is not sufficient.

After that, a Frame-Scoring Transformer uses the fused image-text representations as input

and outputs scores to individual frames in the video. The image-text embeddings are fed to

the bottom of both the encoder and decoder stacks. Similar to Vaswani et al. (2017), the authors

add positional encoding to the input embeddings at the bottom of the encoder and decoder

stacks to insert information about the relative positions of the tokens in the sequence.

Finally, the frame-level scores are converted into shot-level scores, and these shots are se-

lected and arranged to produce the final summary.

2.2.2 Extractive Text Summarization Techniques

2.2.2.1 Classical Approaches

In the work of Aparı́cio (2015), they considered five text-based summarization approaches:

LexRank (Erkan & Radev, 2004) and Support Sets (Ribeiro & de Matos, 2011), which are
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centrality-based, MMR (Carbonell & Goldstein, 1998), and GRASSHOPPER (X. Zhu, Goldberg,

Van Gael, & Andrzejewski, 2007), which are diversity-based, and LSA (Y. Gong & Liu, 2001),

which is a mathematical technique based on Singular Value Decomposition (SVD). Centrality-

based algorithms consider that the most important content of an input is the most central,

considering its representation as a graph, spatial, etc. On the other hand, Diversity-based algo-

rithms focus on maintaining diversity in the summary.

Aparı́cio (2015) summarized the movie’s subtitles using the centrality-based LexRank

(Erkan & Radev, 2004) algorithm to determine the film’s most important content and avoid di-

versity (to guarantee coherence). The LexRank algorithm is a graph-based algorithm in which

the text is converted into a graph representation, where sentences, represented by TF-IDF score

vectors, are nodes, and edges between sentences are weighted based on their cosine similarity.

An adapted version of Google’s PageRank algorithm for ranking web pages (Brin & Page,

1998) is applied to determine the centrality of each sentence. It measures the importance of a

sentence based on its connections to other sentences, and its computation follows Equation 2.8.

S(Vi) =
1− d

N
+ d×

∑
Vj∈adj[Vi]

Sim(Vi, Vj)∑
Vk∈adj[Vj ]

Sim(Vj , Vk)
S(Vj) (2.8)

where d is a damping factor that ensures the convergence of the method, N is the total

number of vertexes, and S(Vi) is the score of the ith vertex.

2.2.2.2 BERT for Extractive Text Summarization

Bidirectional Encoder Representations from Transformers (BERT) was introduced by Devlin

et al. (2018) to improve language understanding by pre-training the bidirectional transformer

architecture on a large text corpus.

When it was presented, BERT generated significant excitement within the Machine Learn-

ing community due to its ability to achieve state-of-the-art performance in various NLP tasks.

These tasks include Question Answering (SQuAD v1.1), Natural Language Inference (MNLI),

and several others.

The primary technical breakthrough of BERT involves utilizing bidirectional training from

the Transformer (explained previously in section 2.2.1.2). Unlike previous approaches focused
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on sequential or combined left-to-right and right-to-left training, BERT trains the model bidi-

rectionally. Devlin et al. (2018) findings also demonstrate that bidirectional training enables

the model to better understand language context and coherence compared to unidirectional

models. In BERT’s case, as it aims to build a language model, only the encoder part of the

Transformer is needed.

The input to BERT consists of a token sequence. These tokens are initially transformed into

vector embeddings and subsequently processed within the neural network. The network’s

output is a sequence of vectors, each representing an input token with a corresponding index,

and all vectors have a size of n. The main objective of implementing bidirectional training is to

capture contextual relationships between words or sub-words in text. This way, to be able to

leverage this quality, the authors defined two training strategies:

• Masked-Language Modeling (MLM): This pre-training objective is inspired by the Cloze

task in Taylor (1953). A percentage of input tokens in a given text sequence are randomly

replaced with a special [MASK] token. The objective is for the BERT model to predict

the original value of these masked tokens based on the surrounding context. The BERT

loss function considers only the masked values’ prediction and ignores the non-masked

words’ prediction. As presented in Fig. 2.15, to obtain the prediction of the output

words, the final hidden vectors of the Transformer Encoder are fed to a classification layer

which outputs are transformed into the vocabulary dimension, computing the probability

of each word in the vocabulary with softmax. In the case of BERT, during training, the

data generator selects 15% of the token positions randomly. For each iteration, the token

in each selected position has an 80% chance of being replaced with the special [MASK]

token, a 10% chance of being replaced with a random token, and 10% of being unchanged.

This is done to mitigate the mismatch between pre-training and fine-tuning since the

[MASK] token does not appear during fine-tuning.

• Next Sentence Prediction (NSP): During BERT training, the model is presented with

sentence pairs and trained to determine whether each pair’s second sentence follows the

original document’s subsequent sentence (Fig. 2.16). In the training data, 50% of the in-

puts consist of sentence pairs where the second sentence is indeed the subsequent one in
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Figure 2.15: MLM - Masked Language Modeling.

the document. Conversely, the remaining 50% of inputs involve a random sentence se-

lected from the corpus as the second sentence. The intention is for the random sentence to

be unrelated or disconnected from the first sentence, allowing the model to learn to distin-

guish between coherent and incoherent sentence pairs. This is done by inserting tokens

indicating the beginning and end of each sentence and adding to each token a positional

embedding and sentence embedding differentiating between sentence A and sentence B.

In BERTs training, the entire input sequence goes through the Transformer model, and the

probability of being the following sentence is computed with softmax (Jernite, Bowman,

& Sontag, 2017; Logeswaran & Lee, 2018).

Figure 2.16: NSP - Next Sentence Prediction. Devlin et al. (2018)
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During the training of the BERT model, both MLM and NSP strategies are trained simulta-

neously. The objective is to minimize the combined loss function that incorporates both training

objectives.

The pre-training process in BERT aligns with the established practices in language model

pre-training. The authors utilized the BooksCorpus (800M words) (Y. Zhu et al., 2015) and En-

glish Wikipedia (2,500M words) as the pre-training corpus. In the case of Wikipedia, only the

text passages were extracted (disregarding lists, tables, and headers). To extract longer con-

tiguous text sequences, utilizing a corpus at the document level rather than a shuffled corpus

at the sentence level, like the Billion Word Benchmark (Chelba et al., 2014), is crucial.

The pre-trained BERT model can be used to obtain sentence embeddings to be applied

in many different ways. Miller (2019) leverage BERT for Extractive Text Summarization in

Lectures. By visual examinations of clusters, the authors determined that the second to last

averaged layer produced the best embeddings for representations of words for their use-case.

One hypothesis for this, which the authors also mention, is that the final layer was biased by the

classification tasks in the original training of the model.

After extracting the embeddings for each sentence of the complete text corpus, the authors

selected the K-Means algorithm for clustering the embeddings. They defined, as k, the final

desired number of sentences in the produced summary. The sentences closest to the clusters’

centroids were selected for the final summary.

The K-Means algorithm gained significant popularity in MacQueen (1967), where the au-

thor expanded on it, formalizing its principles and demonstrating its effectiveness for cluster-

ing analysis. The algorithm is an unsupervised machine-learning technique for partitioning a

dataset into distinct groups or clusters. The algorithm aims to group similar data points based

on their embeddings similarity. It starts by randomly initializing k cluster centroids in the em-

beddings space and assigning each data point to the nearest centroid based on their distance

(usually Euclidean distance). From here, in each iteration, a new centroid position for each

cluster is computed by taking the mean of all data points assigned to it and reassigning all of

them to the new centroids’ positions until the centroids stabilize and there is minimal change

in the data point assignments. This procedure results in obtaining k clusters, with each data

point belonging to the cluster defined by its nearest centroid.
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2.2.3 Music - Video Retrival

2.2.3.1 Emotion Representations

Numerous studies have demonstrated the impact of multimedia, such as music and videos, on

human emotions (Cowen & Keltner, 2017; Juslin & Laukka, 2004; Jaquet, Danuser, & Gomez,

2014). The recent work of Thao, Roig, and Herremans (2023) shows the vast majority of ways

emotions can be represented. They usually fall into two categories: using discrete categories or

continuous dimensions.

The categorical approach represents emotions by describing them in terms such as happy,

fearful, sad, and others. This approach encompasses various emotional categories to capture

the different facets of human emotions. The drawback of this representation is that there is

no commonly defined taxonomy. For instance, in the Geneva Emotional Music Scales (GEMS)

model (Zentner, Grandjean, & Scherer, 2008), there are nine different categories with a total

number of up to 45 emotion terms (in GEMS-45), but Ekman, Sorenson, and Friesen (1969)

”only” have six basic emotions, and Cowen and Keltner (2017) have 26 categories.

In the continuous approach, emotions are represented by mapping them into a dimensional

space (Baveye, Dellandrea, Chamaret, & Chen, 2015; Zlatintsi et al., 2017; Bradley, Greenwald,

Petry, & Lang, 1992; Watson & Tellegen, 1985; Watson, Wiese, Vaidya, & Tellegen, 1999). This

approach offers the advantage of effectively modeling the diversity and complexity inherent in

human emotions. However, this representation has difficulty in accurately distinguishing and

representing certain emotions, such as nostalgia, within the framework of continuous dimen-

sions (Van Tilburg, Wildschut, & Sedikides, 2018; B. Li & Kumar, 2019).

2.2.3.2 Available Datasets

There are limited datasets for affective audio-visual correspondence learning, and they are de-

rived from combinations of existing ones.

Some other studies involving action recognition assignments or audio signal categorization

produced the datasets used in most audio-visual correspondence learning tasks (Gemmeke et

al., 2017; Aytar, Vondrick, & Torralba, 2016; Kay et al., 2017; Chung, Senior, Vinyals, & Zis-

serman, 2017; Parkhi, Vedaldi, & Zisserman, 2015; Nagrani, Chung, & Zisserman, 2017). The
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IMEMNet (S. Zhao et al., 2020) and IMAC (Verma, Dhekane, & Guha, 2019) datasets are created

from music and images. The two datasets in B. Li and Kumar (2019) are both dedicated to affec-

tive correspondence learning between music and video. However, they are not released. The

authors constructed music-video pairs involving a crowd-sourcing approach, where annotators

provided feedback on the prevalence of emotions in both streams. The dataset comprises 3,000

music-video pairs, evenly divided into matched and mismatched pairs, covering 140 emotions.

The video streams for the first dataset were gathered from Cowen’s dataset (Cowen & Kelt-

ner, 2017), and the music segments were chosen at random from the Unbalanced Train set of

the Music Mood dataset, which is part of the AudioSet ontology (Gemmeke et al., 2017).

For the second dataset, the music was collected from Spotify and the videos from Instagram

and from Moments in Time dataset (Monfort et al., 2019).

2.2.3.3 EmoMV - Datasets and Proposed Model

The limitation on available datasets with affective audio-visual correspondence learning bench-

marks motivated Thao et al. (2023) to create a collection of three datasets (EmoMV) for affective

correspondence learning between music and video modalities. Furthermore, alongside creat-

ing three novel datasets, a benchmark deep neural network model is introduced for binary

classification of affective music-video correspondence. Subsequently, this model undergoes

modifications to accommodate affective music-video retrieval.

EmoMV Datasets

The authors utilize emotion categories to construct matched and mismatched music-video

pairs, as discrete representations of emotions are generally more comprehensible for non-

experts. Three datasets were produced:

• EmoMV-A Dataset: This dataset made use of the 30 seconds music video segments

from the MVED dataset (Pandeya, Bhattarai, & Lee, 2021) without the ones correspond-

ing to the ”neutral” category. Table 2.1 presents the quantity of the collected music

video segments associated with each emotion label. Each music video segment has an

emotional label based on visual and audio clues. With a vote of confidence in the an-

notation process for the MVED dataset, the authors considered the music and video
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streams from each music video segment taken from the MVED dataset as matched

in terms of emotions. Taking this into consideration, the final result of this dataset

is 2, 208/1, 902 matched/mismatched music/video pairs in the training set, 310/246

matched/mismatched pairs in the validation set, and 124/124 matched/mismatched

pairs in the test set. The mismatched pairs correspond to eight pairs of (mismatched)

emotion labels: exciting – fearful, exciting – tense, exciting – sad, exciting - relaxing, fear-

ful - sad, fearful – relaxing, tense – sad, and tense – relaxing. As stated by Pandeya et al.

(2021), the MVED dataset includes music video segments annotated with fearful or tense

labels but exhibits distinct visual elements while sharing similar audio components such

as high pitch and rhythmic variation. Similarly, segments labeled with sad or relaxing

emotions share common audio characteristics like slow tempo and soft music. Due to

this overlap, the authors excluded fearful-tense and sad-relaxing emotion pairs.

Table 2.1: Number of music video segments corresponding to each emotion label in the reduced
MVED dataset.

Reduced MVED dataset Exciting Fearful Tense Sad Relaxing Total

Train set 843 828 652 730 1,057 4,110

Validation set 102 111 84 111 148 556

Test set 50 50 50 50 50 250

• EmoMV-B Dataset: This dataset used the Music Mood dataset (Olah, 2015) of the Au-

dioSet ontology. This dataset consists of music segments derived from music clips on

YouTube and, because of this reason, to create this dataset, the authors started by man-

ually validating every single music video segment in the Music Mood dataset, filtering

out the segments that only had footage of video games or some unrelated images in the

video stream, as well as the ones corresponding to low quality of the music stream or

that mainly contain speech. Adding the unavailability of many given YouTube links, the

authors ended this process with 4,487 music videos. In the original Music Mood dataset,

only the music stream was considered for the emotion annotation. Therefore the authors

trained a model to tackle the emotion classification task on the MVED dataset, whereby

music video segments are annotated with one of six emotions (including exciting, fearful,

tense, sad, relaxing, and neutral). This was done by modifying the Feature AttendAf-
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fectNet model (Thao, Balamurali, Roig, & Herremans, 2021) by changing its last fully-

connected layer from one neuron to six neurons, followed by a softmax layer. This model

was introduced to predict arousal/valence values. Following the authors of the original

model, the authors of EmoMV used the ResNet-50 (He, Zhang, Ren, & Sun, 2016) (pre-

trained on the ImageNet dataset (J. Deng et al., 2009)), FlowNetS (Dosovitskiy et al., 2015)

(pre-trained on the Flying Chairs dataset (Dosovitskiy et al., 2015)) and RGB-stream I3D

networks (Carreira & Zisserman, 2017) (pre-trained on the Kinetics dataset (Kay et al.,

2017)) as feature extractors to obtain the visual features from the video stream. As for the

audio features, the VGGish network (Hershey et al., 2017) pre-trained on the AudioSet

dataset (Gemmeke et al., 2017) was used. The authors reported that this model reaches

the highest classification accuracy of 86.67% in the test set of the MVED dataset when

using both visual and audio features. The reached F1-score (Goutte & Gaussier, 2005)

was 0.866 and Area Under the ROC Curve (AUC) (Brown & Davis, 2006) was 0.982. Af-

ter training the model, the authors obtained emotion labels for music video segments in

the filtered Music Mood dataset. They only considered music video segments for which

the same emotion label was predicted for their video stream, music stream, and both,

ending up with 832 labeled music video segments. Discarding the ”neutral” label and

running the same process implemented for EmoMV-A to get match/mismatch labels mu-

sic/video pairs, the EmoMV-B dataset ended up consisting of 496 music video segments

for the train set and 120 for the validation set, both balanced in the number of matched

and mismatched pairs.

Figure 2.17: The Modified Feature AttendAffectNet employs dimension reduction by passing
the feature vectors V through fully connected layers with eight neurons each, obtaining a set
of dimension-reduced feature vectors V̂ . These vectors then go through N identical layers,
each containing a multi-head self-attention mechanism and a feed-forward layer. The resulting
stack outputs encoded feature vectors Ṽ . These vectors are subsequently processed through an
average pooling layer, dropout, a fully connected layer with six neurons, and a softmax layer to
predict the probability of each emotion category.
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• EmoMV-C Dataset: This dataset comprises self-collected music videos of songs featured

in movies (soundtracks) using Google and YouTube. Many of them contain movie scenes.

The collected ”raw” data were split into 2, 688 music video segments for 30 seconds each.

After this step, to get the emotion labels of all streams and the consequent match/ labels

music/video pairs, the same process described for EmoMV-B was applied (Fig. 2.17).

This resulted in a collection of 360 music video segments for the train set and 96 for the

validation set, both balanced in the number of matched and mismatched pairs.

A summary of the three datasets in the EmoMV collection is presented in Table 2.2.

Table 2.2: The EmoMV Dataset Collection.

Dataset Music Videos Train Set Validation Set Test Set

EmoMV-A
Matched 2208 310 124

Mismatched 1902 246 124

EmoMV-B
Matched 248 60 -

Mismatched 248 60 -

EmoMV-C
Matched 180 48 -

Mismatched 180 48 -

EmoMV Model for Affective Music-video Retrieval

In addition to the dataset Collection, the EmoMV authors also proposed two models for

distinct tasks: binary affective music-video correspondence classification and affective music-

video retrieval. In the scope of this work, we are presenting the affective music-video retrieval

model, although they are both very similar.

The proposed model utilizes pre-trained deep neural networks, initially designed for ac-

tion recognition and audio classification, to extract visual and audio features from video and

music streams. To achieve a shared representation, video and music projection heads are em-

ployed to embed the visual and audio features into a common representation space where the

distance between the visual and audio embeddings is computed. Following the multi-task

learning approach, the authors appended the music and video branches (for music and video

emotion classification) to the music and video subnetworks, respectively. A highlighted repre-

sentation of the proposed model is presented in Fig. 2.18.

Video subnetwork

To extract the embeddings of the video stream, the authors of Thao et al. (2023) made use
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Figure 2.18: EmoMV Model for Affective Music-video Retrieval.

of the SlowFast (Feichtenhofer, Fan, Malik, & He, 2019) network pre-trained on the Kinetics

human action video dataset (Kay et al., 2017).

The SlowFast (Feichtenhofer et al., 2019) network is a popular video classification model

that leverages spatial and temporal information for better performance. It is typically pre-

trained on large-scale video datasets like Kinetics, which contains various human action videos.

The SlowFast network consists of two pathways: a slow pathway and a fast pathway. The

slow pathway captures the spatial information and processes the frames at a slower rate. In

comparison, the fast pathway captures the temporal information and processes the frames

faster. This combination allows the model to effectively capture fine-grained details and motion

dynamics in videos.

During pretraining on the Kinetics human action video dataset (Kay et al., 2017), the Slow-

Fast network is trained to predict the correct action labels for many video clips. This process

enables the model to learn meaningful video representations that can generalize to other video-

related tasks.

After pretraining, the SlowFast network can be used as a feature extractor for video streams

by removing its last classification layer. Given a video, the network processes it frame by frame,
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Figure 2.19: A SlowFast network has a low frame rate, low temporal resolution Slow path-
way and a high frame rate, α× higher temporal resolution Fast pathway. The Fast pathway is
lightweight by using a fraction (β, e.g., 1/8) of channels. Lateral connections fuse them.

and the output embeddings capture high-level semantic information about the video content.

As a result, the authors of Thao et al. (2023) end up with a 2, 304 dimensional feature vec-

tor from each video stream, which goes through a fully-connected layer with 64 neurons for

dimensionality reduction and passes to the video projection head.

Music subnetwork

To extract the embeddings of the music stream, the authors of Thao et al. (2023) made use

of the VGGish (Hershey et al., 2017) network pre-trained on the AudioSet ontology (Gemmeke

et al., 2017) to extract a 128-dimensional feature vector from the log-mel spectrogram computed

with each 0.98-second music segment (which is at a sampling rate of 16 kHz with signed 16-bit

PCM encoding and a mono channel). The resulting log-mel spectrogram is a two-dimensional

matrix where the x-axis represents time (corresponding to the audio frames), and the y-axis

represents frequency (corresponding to the Mel scale). Each matrix element represents the

logarithmically compressed energy in a specific frequency bin at a particular time frame. The

Mel scale is a perceptual scale of pitches or frequencies that approximates the human auditory

system’s frequency perception. It was developed to reflect better how humans perceive and

distinguish different sound frequencies.

The feature vectors extracted from all 0.98-second (hop size) music segments were averaged

element-wise to obtain a condensed representation of the music stream within each segment

within each music segment. This averaging process resulted in a 128-dimensional vector that

captures the essence of the music in the segment. Similar to the video subnetwork, this 128-

dimensional vector is then passed through a fully-connected layer with 64 neurons to reduce
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its dimensionality further and passed to the music projection head.

The AudioSet ontology (Gemmeke et al., 2017) is a large-scale dataset that contains a wide

range of audio clips, each labeled with a specific sound event. The VGGish (Hershey et al.,

2017) network is trained on this dataset to learn discriminative audio representations.

The architecture of the VGGish network is inspired by the VGG network architecture com-

monly used for image recognition tasks. However, it is adapted for audio analysis. The net-

work consists of several convolutional layers followed by fully connected layers.

During pretraining, the VGGish network learns to extract low-level audio features, such as

spectrograms, from raw audio waveforms. It captures both temporal and spectral information

from audio signals, enabling it to represent audio content meaningfully.

Emotion classification branches

To enable multi-task learning, Thao et al. (2023) extend the video and music subnetworks

by adding video and music branches. As shown in Fig. 2.17, the dimensionally reduced visual

and audio feature vectors, obtained by the fully-connected layers of 64 neurons in their respec-

tive subnetworks, are directed to the newly introduced video and music emotion classification

branches.

Both the video and music emotion classification branches share a common structure. They

consist of a Gaussian Error Linear Unit (GELU) (Hendrycks & Gimpel, 2016) activation func-

tion, followed by a fully-connected layer comprising five neurons (corresponding to the num-

ber of emotion categories). A softmax layer is then applied to obtain the emotion classification

output for each modality.

These emotion classification branches are jointly trained with the main branch during train-

ing. The training process involves using three cross-entropy loss functions, where each loss

function carries equal weight.

By incorporating these multi-task branches and jointly training them, the authors aimed to

leverage the shared information between video and music modalities, enhancing the model’s

ability to classify emotions accurately.

Projection Heads

Inspired by the projection heads originally applied to the textual and visual features in the
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Contrastive Language-Image Pretraining (CLIP) model (Radford et al., 2021), Thao et al. (2023)

also applied this technique for music and visual features instead, with the objective of embed

the visual and audio features into a common representation space.

Both video and music projection heads follow the same structure: fully-connected layers

of 64 neurons each, the GELU (Hendrycks & Gimpel, 2016), a dropout ratio of 0.5, a residual

connection, and L2-normalization, as described in Fig. 2.20.

Figure 2.20: Structure of the Projection Heads used to project visual and audio features into a
common representation space.

Cosine Similarity

Similar to the works of S. Zhao et al. (2020); B. Li and Kumar (2019); Wang, Yang, Jhuo,

Lin, and Wang (2012), to perform the affective music-video retrieval task, the main branch of

the model computes the cosine distance dcos(fv, fm) between visual (fv) and audio embeddings

(fm) as follows:

dcos(fv, fm) = 1− Scos(fv, fm) (2.9)

Where Scos(fv, fm) is the cosine similarity between the visual and audio embeddings:

Scos(fv, fm) =
fv.fm

∥fv∥ × ∥fm∥
(2.10)

Where ∥fv∥ and ∥fm∥ are the Euclidean norm of the vectors fv and fm, respectively.

Experimental Setup

In this study, the Adam optimizer is used in the training phase, whereby the maximum

number of epochs is 1, 000. The batch size was set to 256, and the learning rate to 0.0001. The
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early stopping is applied with the patience parameter of 20. The experiments were conducted

using Python 3.6 on an NVIDIA GTX 1070 GPU. This setup is applied for both our proposed

model and the baseline.

As mentioned previously, the three networks are trained simultaneously using three equal

weighted loss functions, including two cross-entropy loss functions (Ackley, Hinton, & Se-

jnowski, 1985), as shown in Eq. 2.11, for the video and music subnetworks, and the contrastive

loss (Hadsell, Chopra, & LeCun, 2006) on the cosine distance between the visual and audio

embeddings.

LCE = −
n∑

i=1

ti log(pi), for n classes, (2.11)

where ti is the truth label and pi is the Softmax probability for the ith class.

Contrastive loss functions compare pairs of samples and compute a loss based on their

similarity. It aims to minimize the distance or maximize the similarity between their embed-

dings if they are similar and, contrarily, maximize the distance or minimize the similarity if

they are dissimilar. This way, the loss encourages similar samples to have embeddings that

are close together and dissimilar samples to have embeddings that are far apart. The intuition

behind contrastive loss is to maximize the similarity of similar vectors, aiming for a value close

to 1. This is because a similarity value of 1 results in an optimal loss of 0 (− log(1) = 0). On the

other hand, we want the similarity value to be close to 0 for different vectors. Any non-zero

similarity values would reduce the loss for similar vectors, which is undesirable. Therefore,

by pushing different vectors towards a similarity value of 0, we can effectively minimize their

impact on the loss for similar vectors.

During the inference process, when a music query is provided, the model computes the

cosine similarity score between the audio embedding of the queried music and the visual em-

beddings of all video segments in the provided database. This similarity score quantifies the

similarity between the audio and visual features. The video segments are ranked by leverag-

ing these similarity scores, and the top-ranked results are identified as the best matches to the

music query. This ranking process enables us to find the video segments that align closely with

the audio characteristics of the music query.

Results
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To evaluate the performance of the proposed model on the affective music-video retrieval

task, the authors compute the Mean Average Precision (mAP) score as used by Teufel (2007),

and the top-K retrieval accuracy:

• Mean Average Precision (mAP): When calculating this metric, a retrieved result is con-

sidered relevant to the query if it shares the same label. Conversely, if the labels differ,

the result is considered irrelevant. This implies that for each video query, multiple mu-

sic segments can be considered relevant (according to the ground truth) and vice versa.

The mAP score considers these relevance relationships to assess the overall performance

of the retrieval system. According to the information retrieval theory (Teufel, 2007), the

mAP corresponds to the mean of the Average Precision (AP) of all queries. This is pre-

sented in Eq. 2.12, where N is the number of queries and APi is the Average Precision

for query i, which equation is presented in Eq. 2.13. Ri is the number of relevant docu-

ments for query i. Precisioni(rel = j) (as presented in Eq. 2.14) is the precision at the j-th

document that is rerelevant to query i.

mAP =
1

N

∑
Ni = 1APi, (2.12)

APi =
1

Ri

Ri∑
j=1

Precisioni(rel = j), (2.13)

Precisioni(rel = j) = ri(j)/j, (2.14)

• Top-K retrieval accuracy: In music-video retrieval, this metric is defined as the percent-

age of music queries for which at least one relevant video segment is retrieved among the

top K results. This metric quantifies the effectiveness of the retrieval system in returning

relevant music segments for a given set of video queries.

The proposed model achieved the results presented in Table 2.3 for the aforementioned

metrics.
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Table 2.3: Given a music query, retrieve videos: Accuracy and the mAP on the EmoMV dataset
collection.

Dataset Top-1 (%) Top-3 (%) Top-5 (%) mAP (%)

EmoMV-A 56.00 83.60 90.80 52.31

EmoMV-B 44.17 77.50 86.67 46.83

EmoMV-C 46.88 75.00 86.46 41.98

2.3 Summary

We verify that many recent advances in the Deep Learning field related to video summarization

come from NLP architectures. This happens because of the similarities in the structure of both

data types.

We chose to use BERT for extractive text summarization of subtitles and the EmoMV model

for Affective music-video retrieval to generate a movie tribute automatically.
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3Generation Of A Movie

Tribute

Do, or do not. There is no “try”.

– Yoda, ”Star Wars: Episode V - The Empire Strikes Back”

This chapter presents our approach to the generation of a movie tribute. An overview of

the proposed pipeline is presented in Fig. 3.1.

Figure 3.1: Proposed Architecture Overview.

In the Music Branch, we segment the music based on its tempo and extract audio features

from each segment using the VGGish (Hershey et al., 2017) network pre-trained on the Au-

dioSet ontology (Gemmeke et al., 2017).

For the Movie Branch, we run extractive summarization using BERT on the subtitles cor-

pus to select highlights corresponding to movie scenes with subtitles. We also implemented

K-means clustering to select movie highlights without subtitles. After selecting the movie high-

lights, the embeddings for each one are extracted using the SlowFast (Feichtenhofer et al., 2019)

network pre-trained on the Kinetics human action video dataset (Kay et al., 2017).

We selected the EmoMV model presented before (section 2.2.3.3) to compute the similarity

matrix between the selected movie highlights and the music segments. We also add a weight

related to the movie scenes’ temporal order before matching each music segment to the corre-

sponding highlight.
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The Post-Production corresponds to loudness adjustment for each soundtrack (music and

collected movie segments) and an offset that is added to all the breaking points’ values in case

there is a need to adjust the movie scenes timestamps (in the majority of the cases, this is not

needed).

On top of the model, we also created a simple UI to monitor the whole process and intu-

itively adjust the parameters to generate the movie tribute.

3.1 Music Branch

3.1.1 Music Breakingpoints

To load, manipulate and segment the sound data, we used the Librosa python package (McFee

et al., 2015) alongside Ruptures (C. Truong, Oudre, & Vayatis, 2020) to provide us with search

algorithms to determine the breaking points.

We follow the approach proposed in the Ruptures Documentation to select the music

breaking points. This task is seen as a change point detection, consisting of identifying tempo-

ral boundaries that delineate meaningful Sections in a music stream.

We start by loading the desired music with Librosa and compute its tempogram. A tem-

pogram is a representation of tempo information in a musical signal.

It is derived from the onset strength envelope, which measures the intensity of musical

events or notes onsets over time. In this case, the onset strength envelope is computed with the

spectral flux onset envelope method (Böck & Widmer, 2013). The spectral flux onset strength

envelope is computed by transforming the audio signal into the frequency domain using tech-

niques like the Short-Time Fourier Transform (STFT). This yields the magnitude spectrum for

each time frame. The spectral flux is then determined by comparing the magnitude spectra of

consecutive frames and measuring the magnitude difference between them. By analyzing the

rate of change in the spectral content frame by frame, the spectral flux onset strength envelope

captures energy fluctuations and variations in the audio signal, often indicating note onsets or

other significant musical events, being useful for beat tracking, onset detection, and rhythm

analysis in music signal processing.

The tempogram analyzes the patterns and periodicities in the onset strength envelope to
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estimate the underlying time-varying representation of tempo (measured in Beats Per Minute,

BPM), allowing for the detection of tempo changes and variations throughout a musical piece.

The tempo represents the fundamental rhythmic structure and provides a sense of timing and

groove in music (Grosche, Müller, & Kurth, 2010).

Figure 3.2: Computed tempogram and respective breaking points for the music ”Chevaliers De
Sangreal” by Hans Zimmer.

To get the music breaking points, we detect the changes in the mean of the tempogram

(a multivariate signal) using the Kernel change point detection (Celisse, Marot, Pierre-Jean, &

Rigaill, 2018; Arlot, Celisse, & Harchaoui, 2019). A kernel function is chosen to capture the

underlying structure or patterns in the data. The kernel function measures the similarity or

dissimilarity between two data points based on their characteristics or features. We selected

the CostL2 cost function, as suggested by Rupture’s authors.

The first user input we request is the desired average music segment time. We define the

number of breaking points as presented in Eq. 3.1 with the provided parameter. This com-

puted value is fed to Ruptures Kernel Change Point Detection, which outputs the values of the

computed music breaking points. Fig. 3.2 presents an example music tempogram with the

corresponding selected breaking points.

number of breakingpoints =
total music time

desired average music segment time
(3.1)

The second requested user input is the desired minimum music segment time. After comput-

ing the breaking points, we append consecutive music segments (by removing the breaking

point that separates them), guaranteeing that all music segments have a duration higher than

the provided user parameter.
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3.1.2 Embedding extraction of the Segmented Music Clips

We are implementing the proposed EmoMV Model for Affective Music-video Retrieval, this

way we extract the music embeddings using the VGGish (Hershey et al., 2017) network pre-

trained on the AudioSet ontology (Gemmeke et al., 2017) in a similar manner as explained in

Section 2.2.3.3. The main difference is that we let the user define the hop size (3rd user input)

instead of having it fixed at 0.98 seconds. For each music segment, a 128-dimensional feature

vector is computed for each sub-segment defined by the hop size, which is averaged element-

wise.

We obtain a 128 dimensional feature vector for each music segment from this process.

3.2 Movie Branch

3.2.1 Movie Scenes Breakingpoints

The first processing step of the movie is to compute the scene transitions (breaking points). To

do this, we make use of the PySceneDetect (Castellano, 2023) python package. PySceneDetect

is a Python package that provides a simple and efficient way to analyze videos and detect

scene changes. It works by analyzing video frames and identifying significant changes between

consecutive frames. These changes can include abrupt changes in brightness, color, motion,

or other visual characteristics. PySceneDetect allows easy video segmentation into separate

scenes or shots by detecting these scene changes.

We used the detect() function available in the PySceneDetect package with the ContentDe-

tector detection algorithm (also available in the package) to extract the movie scenes breaking

points. The ContentDetector compares the difference in content by considering pixel changes

in the HSV colorspace (Smith, 1978) between adjacent frames against a set threshold/score,

which, if exceeded, triggers a scene cut.

The components of the HSV colorspace are presented below:

• Hue (H): represents the pure color information without considering brightness or satura-

tion (determines the type of color, such as red, green, or blue). It is measured in degrees

on a circular scale, typically ranging from 0 to 360 degrees;
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• Saturation (S): refers to the intensity or purity of a color (the amount of gray present in a

color). It is expressed as a percentage;

• Value/Brightness (V): represents a color’s perceived lightness or darkness. A value of 0%

corresponds to black, while 100% represents the brightest color.

After processing the movie, we get a list of all breaking points corresponding to the movie

scenes’ transitions.

3.2.2 Highlights Selection

With the movie Scenes breaking points defined, we determine which scene contains dialogue

and which does not by leveraging the information in the Movie’s srt (SubRip Text) file. In the

process, we also group the subtitles according to the corresponding scene.

The (srt) file is a plain-text subtitle file format commonly used for displaying subtitles or

captions in videos. This file contains information about the dialog in the Movie and the relative

timestamps corresponding to the portion of the Movie where the respective dialogue occurs.

We use the pysrt python package as the interface for this file type.

Figure 3.3: Process to categorize movie scenes as Subtitle or No-subtitled.

After separating the two different types of scenes, we select each group’s highlights by

implementing two different methods.
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3.2.2.1 Subtitled Scenes Selection

To define the highlights regarding the subtitled scenes, we make use of the bert-extractive-

summarizer python package, which is a generalization of the lecture-summarizer repo from

(Miller, 2019), which leverages BERTs embeddings to perform extractive summarization, as

explained previously in Section 2.2.2.2.

To further be processed by the extractive summarization model, for each scene, all the

corresponding subtitles are appended together into a single Python string and processed as

follows:

• Remove extra white spaces;

• Convert all letters to lowercase;

• Remove all punctuations;

• Add a ”.” at the end of the string (composed of all subtitles of the same movie scene).

We need to define a summarization ratio to run the BERT model for extractive summariza-

tion. This ratio is computed as follows:

summarization ratio =
number of music segments
numberofsubtitledscenes

× α,

0 < summarization ratio <= 1

(3.2)

α is a constant directly multiplied by the default summarization ratio (α = 1) defined as a

4th user input. This allows the user to force select more subtitled scenes than the default.

3.2.2.2 No-Subtitled Scenes Selection

To select the highlights from no subtitled scenes, we first define the number of non-subtitled

highlights to select as presented in Eq. 3.3.
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number of no subtitled scenes = int(
number subtitled highlights

1
β − 1

),

0 <= β <= 1

(3.3)

β being the ratio of no subtitled highlights to consider, the 5th user input. Our approach

to selecting the highlights in the no-subtitled scenes group is much more time-consuming

than the extractive summarization method. For this reason, we allow the user to decide the

weight that the movie scenes without subtitles may have in the tribute generation, which also

may vary on the type of movie and music being used. We extract video embeddings (us-

ing the SlowFast (Feichtenhofer et al., 2019) network pre-trained on the Kinetics human ac-

tion video dataset (Kay et al., 2017)) from randomly selected 1.2 × number of no subtitled scenes

no subtitled movie scenes. We run the K-Means algorithm for clustering the obtained em-

beddings (in a similar way as it’s done with the BERT embeddings for extractive summa-

rization - Section 2.2.2.2) and select the scenes that are closer to each cluster centroid (K =

total number of no subtitled scenes to select).

3.2.3 Embedding extraction of the Selected Movie Clips

We are implementing the proposed EmoMV Model for Affective Music-video Retrieval, this

way we extract the movie highlights embeddings using the SlowFast (Feichtenhofer et al., 2019)

network pre-trained on the Kinetics human action video dataset (Kay et al., 2017) (explained in

greater detail in Section 2.2.3.3).

We obtain a 2, 304 dimensional feature vector for each movie highlight from this process.

It is essential to notice that if the highlights contain scenes without subtitles, their embed-

dings were obtained beforehand, therefor we avoid computing them again during this step.

In our study, the training phase was done in a local machine using Python 3.8.12 on a 2.3

GHz Quad-Core Intel Core i5 processor. All the training parameters are the same as in the original

work and as follows:

The Optimizer algorithm adjusts a model’s parameters during training. The Maximum

number of epochs is the maximum number of complete iterations through the training dataset.
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Table 3.1: Model’s parameters used in training.

Parameter Value
Optimizer Adam (Kingma & Ba, 2014)

Maximum number of epochs 1, 000
Batch size 256

Learning Rate 0.0001
Early stopping patience 20

The Batch size is the number of feature vectors loaded per batch. The Learning Rate is the

magnitude of the parameter update at each iteration. The Early stopping patience is how long

to wait after the last time validation loss improved.

The model stopped training at 387 epochs during 86.07 seconds of running.

The mAP score and the top-K retrieval accuracy metrics obtained are presented in Table

3.2 (detailed in Section 2.2.3.3).

Table 3.2: Model’s metrics obtained in the EmoMV-C dataset.

Top-1(%) Top-3(%) Top-5(%) mAP(%)
48.95 80.20 88.54 41.34

In inference, we feed the model one music segment at a time as the query to retrieve simi-

larity scores from the set of embeddings from each selected movie highlight (Fig. 3.4).

Figure 3.4: Dimention transformations between the audio and visual embeddings and the
model’s output.
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3.2.4 Model Outputs Processing

The model outputs a similarity matrix (Fig. 3.5) representing the emotional coherence between

the movie highlights and all the music segments.

Figure 3.5: Example of a heatmap representation of the similarity matrix produced by the
EmoMV model pre-trained on the EmoMV-C dataset.

A matrix of the same dimensions is computed regarding the chronological order of the

movie. Since we guarantee that the scenes are ordered (relative to their indexes), each cell X of

the temporal weight matrix is computed as presented in Eq. 3.4.

xij = | i

total number of music segments
− j

total number of highlights
|,

Xij = 2× (0.5− xij)

(3.4)

The intuition to compute xij comes from the idea that music segments and movie high-

lights should attract accordingly to how much closer the relative positions to their total origi-

nal signal are to each other (either for the music or the movie). Accordingly, we compute the

distance between the two, with 0 representing the best temporal affinity and 1 the contrary.

To obtain Xij , we make a domain transformation from 1 → 0 to −1 → 1 to be able to match

the emotion similarity scores. We retrieve the 6th user input as the temporal weight and compute

the final score matrix SM (Eq. 3.5) to be used to define the final matches between the music

segments and movie highlights.
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SM =(1− temporal weight)× emotional similarity matrix

+ temporal weight × temporal weight matrix
(3.5)

The effect of the temporal weight on the score matrix is shown in Fig. 3.6.

Figure 3.6: Example of a heatmap representation of the final score matrix to be used for the
music segments/highlights matching.

Ultimately, we match the music and video segments, prioritizing the highest scores to the

lowest.

3.3 Post-production

We take the breaking points of the selected movie highlights and use the video composition

tools from the MoviePy (Zulko, 2017) python package to extract the needed movie segments,

append them together with the music, and export the final tribute.

We provide a way for the user to add specific inputs that will only change the Tribute

export process, avoiding making all the computations for the same configurations again. These

specific inputs are:

• Loudness adjustment for each soundtrack (music and movie segments): By default, we

adjust both soundtracks to have the same loudness in dBFS (dB relative to the maximum

possible loudness). This input allows the user to manually force an increase or decrease

in each soundtrack’s volume;
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• Offset: A constant positive or negative value (in seconds) that is added to all breaking

points to manually adjust the movie scenes transition times (in the majority of the cases

we tested, this was not necessary).

3.4 Architecture and User Interface

In the process of building the proposed pipeline, the following architectural designs were taken

into consideration:

• The overall architecture is built with a clear distinction between different modules. This

makes it easier to change models and algorithms being used for the multiple tasks in

the pipeline: music/video feature extraction, emotional similarity scores, music/movie

segmentation, and subtitle summarization, amongst others;

• Each module has its own internal Jupyter Notebook, where the related methods were

tested;

• There is a module dedicated to storage management of the saved and temporary files

generated in the process;

• In the project’s root folder is a Jupyter Notebook with the ”Main Pipeline” where it is possi-

ble to generate a movie tribute selecting from available music and movies and introduc-

ing the aforementioned user inputs;

• It is possible to run a Straemlit App that provides the user with an intuitive UI to generate

movie tributes, monitor the whole process and adjust the post-production parameters

(Section 3.3).

Some images of the Straemlit UI are provided below. Straemlit is a Python library that

allows developers to create, as Python scripts, interactive web applications, and dashboards

for data science and machine learning, accessible through a browser.

The homepage of the app (Fig. 3.7a) presents the user with some basic information regard-

ing the difference between Main Inputs and Export Inputs:

Main Inputs:
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• Movie: Dropdown containing all the movies available in storage;

• Music: Dropdown containing all the music available in storage;

• Desired Average Music Segment Time (seconds): Number input limited by [0.0, 20.0];

• Desired Minimum Music Segment Time (seconds): Number input limited by [0.0, 20.0];

• Music Hop Size (seconds): slider with a 0.05 step value, lower-bounded by 0.0 and

upper-bounded by 1.0. The default value is set as 0.98;

• Summarization Ratio Multiplyer: slider with a 1 step value, lower-bounded by 1 and

upper-bounded by 10. The default value is set as 1;

• Ratio of no Subtitled Highlights to consider: slider with a 0.05 step value, lower-

bounded by 0.0 and upper-bounded by 1.0. The default value is set as 0.5;

• Device: Dropdown containing two possible options: ”cpu”, ”gpu”.

Export Inputs:

• Temporal Weight: slider with a 0.05 step value, lower-bounded by 0.0 and upper-

bounded by 1.0. The default value is set as 0.5;

• Loudness adjustment for the music soundtrack: slider with a 0.05 step value, lower-

bounded by 0.0 and upper-bounded by 5.0. The default value is set as 1.0;

• Loudness adjustment for the movie segments soundtrack: slider with a 0.05 step value,

lower-bounded by 0.0 and upper-bounded by 5.0. The default value is set as 1.0;

• Movie Scenes Breakingpoints Offset (seconds): slider with a 0.05 step value, lower-

bounded by −3.0 and upper-bounded by 3.0. The default value is set as 1.0;

The Export Inputs are the user-defined parameters that will only affect the tribute’s export

process, not impacting all the remaining computation (movie scenes breaking points, music

segmentation, movie highlights selection).

We do this separation because we prepared the system not to make all the computations

involving the Main Inputs if the same configuration is already stored in the system (a tribute was
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(a) Home page of the streamlit UI. (b) Music Branch page of the streamlit UI.

(c) Movie Branch page of the streamlit UI. (d) EmoMV Model page of the streamlit UI.

(e) Post-Production page of the streamlit UI pre-
senting the final score matrix.

(f) Post-Production page of the streamlit UI pre-
senting the Export User Inputs and the exported
tribute.

Figure 3.7: Movie Tribute Generator UI, using Streamlit

previously done with the same Main Inputs values). We found this feature extremely relevant

because the modifications in the final tribute caused by the Export Inputs require relatively fast

visual feedback for a better experience (e.g., adjusting movie scenes’ breaking points).

The Main Inputs are always accessible to the user through the ”Control Panel” in the app’s

sidebar and the Export Inputs in the Post-Processing Section.

Once the Main Inputs are submitted, it triggers the whole process. The UI have a dedicated

Section for each part of the Main Pipeline, where it presents metrics related to each part and

a loading animation if the corresponding process is still running: Music Branch (Fig. 3.7b),

Movie Branch (Fig. 3.7c) and EmoMV model (Fig. 3.7d).
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The last Section is ”Post-Production”. In this Section, the user can introduce the Export

Inputs (Fig. 3.7e) and visualize the latest exported movie tribute (Fig. 3.7f).
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You need to learn how to select your thoughts just the same way you select your clothes every

day. This is a power you can cultivate. If you want to control things in your life so bad, work on the

mind. That’s the only thing you should be trying to control.

– Richard, ”Eat Pray Love”

This chapter provides an overview of the dataset utilized in our experiments, along with

details about the individuals who assessed the final tributes. Subsequently, we delve into the

evaluation process and engage in a comprehensive discussion of the obtained results.

4.1 Dataset

Using the The Movie Tribute Generator App, seven Movie Tributes were created using seven

different movies and songs. Table 4.1 presents the metadata related to each tribute creation.

”To The Edge”, ”See You Again”, ”The Last Goodbye”, and ”About You” contain vocals,

while the remaining do not.

All the genres of the movies according to IMDB are as follows:

• ”Atonement”: Drama, Mystery, Romance, War;

• ”300”: Action, Drama;

• ”Furious 7”: Action, Crime, Thriller;

• ”The Curious Case of Benjamin Button”: Drama, Fantasy, Romance;

• ”Interstellar”: Adventure, Drama, Sci-Fi

• ”Howls Moving Castle”: Animation, Adventure, Family, Fantasy;
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• ”Before Sunset”: Drama, Romance.

”Howls Moving Castle” movie is the only animated movie in the dataset.

As expected, being the most processing-demanding branch, the Movie Branch is part of

the architecture that takes longer to be completed.

4.2 Setup

Based on the same evaluation process described by the previous work regarding the ”Auto-

matic Generation of Movie Tributes” (Aparı́cio, 2015), we collected opinions related to the gen-

erated movie tributes from 32 participants. Fig. 4.1 shows a characterization of the viewers, an-

swering the following questions: ”What is your age?”; ”What is your gender?”; ”What is your

level of Education?”; ”What is your area of training?”; ”How often do you watch movies?”;

”How often do you watch movie tributes?”.

Most people were males (59.9%), had between 18 and 25 years (58.6%), had a Master’s

degree (53.1%), and were Computer Engineers (20.7%) or related to other areas of Engineering

(20.7%) or related to Tourism (20.7%). Most people watch movies once a week (43.8%), and 7%

didn’t know what a movie tribute was, while 37.5% watches one once a year, at least.

4.3 Results

We present in Fig. 4.2 the results for content selection, emotional coherence criteria, and overall

scores.

The tributes that had the best scores were ”Atonement” and ”Interstellar”, with an average

of 8 points in all three criteria (content selection, emotional coherence, and overall evaluation),

except in the overall evaluation of ”Atonement”, reaching an average score of 7 points, on a

scale from 1 to 10.

”Furious 7” obtained the worst scores, with 6.25 points on overall evaluation, 6.5 on content

selection criteria, and 5.6 on emotional coherence criteria.

On average, our method led to average scores of 7.2, 6.8, and 6.9 on content selection,

emotional coherence criteria, and overall evaluation, respectively (Fig. 4.3).
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Figure 4.1: Subjects characterization.

Concerning Content Selection, some evaluators mentioned the existence of some unneces-

sary short clips and cuts in the middle of the dialogue in the tributes corresponding to ”The

Curious Case of Benjamin Button”, ”Atonement”, ”Furious 7”, and ”Before Sunset”.

Regarding Post-Production, it was considered that some parts of the tribute have a big dis-

crepancy between the background sound of the movie highlight and the correspondent music

segment (shooting scenes, car sounds, low dialogue sound, movie background music playing

at the same time as the tribute music). This was mainly identified in the following tributes:

”The Curious Case of Benjamin Button”, ”Furious 7”, ”300”, ”Interstellar”, and ”Before Sun-

set”
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(a) (b) (c)

(d) (e) (f)

(g)

Figure 4.2: Each tribute’s evaluation results.

In terms of emotional coherence, the majority of the negative critics evolve around a dis-

crepancy between the overall tone of the song against the overall tone of the music. For in-

stance, it was mentioned that in ”Furious 7” the clips are majorly action-based and the song

has more of an overall sad tone. In the case of ”300”, ”most of the clips were pure action which

felt right with the song”, but there were a few clips where a bigger emotional dissonance was

felt, majorly corresponding to more calm clips, with dialogues, for example.

Some highlighted comments related specifically to some tributes are the following:

• Howls Moving Castle: There were some comments regarding the solution’s ”difficulty

identifying emotional intent in the movie clips or maybe does not take this into con-

sideration at all, which makes it so the tribute doesn’t transmit anything in particular”;
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Figure 4.3: Average tributes’ evaluation results.

Although the majority of this comments were from subjects that didn’t watch the movie;

The ones who have seen the movie, present an overall positive response (e.g.: ”The nos-

talgia of this movie I simply love. The focus on the great characters”);

• The Curious Case of Benjamin Button: ”The main character should be more on the

screen and the order of the movie should be kept since this is the whole point of the

movie”;

• 300: ”I liked the fact that many of the critical scenes were shown, and fantastic VFX shots

were highlighted”;

• Atonement: ”Even without having watched the movie it was well shown and I feel like

the important moments were there”;

• Furious 7: ”The clips don’t go all the way to the end of the film. But select crucial mo-

ments of the story”;

• Interstellar: ”It’s emotional and the scenes are very well linked with the music. Even the

action scenes. I would just like to hear a little more of the dialogue”;

• Before Sunset: There were a lot of complaints regarding the audio quality of the movie

and the major quantity of dialogue scenes, that conflicted with the music vocals. ”The

music would probably fit the movie well if it was well edited”; ”There is a lot of dialog

and transitions while the characters are in the middle of a sentence”.

Figure 4.4 shows that all metrics have a strong positive correlation with each other. The

ones that appear to be more strongly related are Content Selection and Emotional Coherence,

and Content Selection and Overall Evaluation.
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Figure 4.4: Spearman’s ranks.

4.4 Discussion

In this work, content selection is driven by text streams to select the movie highlights contain-

ing subtitles and visual streams to select the movie highlights not containing subtitles. The

text stream is obtained through the subtitles file (.srt) of the movie and the visual streams cor-

respond to extracted embeddings of movie scenes without subtitles. We then match extracted

video embeddings of the selected movie scenes with extracted audio embeddings from the mu-

sic stream using the Emomv Model for Affective Music-video Retrieval and an auxiliary matrix

containing weights corresponding to the chronological order of the selected highlights in the

original movie.

The majority of the negative critics of the generated tributes, seem to be deeply related to

the tribute’s edition quality: bad quality and/or balance between the audio from the movie

highlights and the music; scenes containing dialog being cut in the middle of it; unnecessary

too short clips.

We present some possible solutions to tackle these issues in the Future Work (Section 5.2),

although we are also able to tackle the majority of these problems by tweaking the input pa-

rameters of the architecture.

Taking the ”Before Sunset” movie tribute as an example:

• Bad audio quality of the movie: To create this tribute we set Loudness adjustment for
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the music soundtrack= 1.5, leading to the screeching sound of the dialog; We can achieve a

similar result by setting Loudness adjustment for the movie segments soundtrack= 1.5 instead,

not damaging the movie’s audio;

• Transitions in the middle of dialogs: This in specific can be characterized as a contin-

uous conversation between two people That is why we defined the input parameters in

order to process many more subtitled scenes than no subtitled scenes. Although, there

are two parameters that we could tweak that would certainly increase the quality of the

tribute: Desired Average Music Segment Time and Desired Minimum Music Segment Time.

They were set to 00:04’00 and 00:02’06 respectively. By increasing both parameters, we

can compute fewer music breaking points, resulting in longer music segments, which will

lead to longer highlights, conveying more contextual information to the viewer about the

context of the respective dialog.

Our proposed architecture makes the process of generating a tribute much more efficient

by providing an intuitive UI where it is possible to tweak all the input parameters, returning

live visual feedback of the changes. This facilitates the process of trial and error until the user

is satisfied with the final result.
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5Conclusions and Future

Work

Don’t adventures ever have an end? I suppose not. Someone else always has to carry on the

story.

– Bilbo Baggins

5.1 Conclusions

The focus of this work was on the creation of multimedia artifacts, particularly movie tributes.

We implemented various methods for selecting content and ensuring emotional coherence in

the generation process. As described in a previous iteration of this topic by Aparı́cio (2015),

a movie tribute consists of a short music video containing essential parts of the movie playing along

with the specified song. In order to produce this artifact, we created a framework to: 1) Segment

the music based on its tempo and extract audio features from each segment using the VGGish

(Hershey et al., 2017) network pre-trained on the AudioSet ontology; 2) Run extractive summa-

rization using BERT on the subtitles corpus to select highlights corresponding to movie scenes

with subtitles; 3) Implement K-means clustering to select movie highlights without subtitles;

4) Extract video embeddings from the selected highlights using SlowFast (Feichtenhofer et al.,

2019) network pre-trained on the Kinetics human action video dataset (Kay et al., 2017); 5)

Leverage the EmoMV Model for Affective Music Video Correspondence Learning (pre-trained

on the EmoMV-C dataset) to retrieve similarity scores between the selected highlights and the

music segments; 6) Match each music segment to a corresponding movie highlight based on

the similarity scores produced by the EmoMV model and a computed weight related to the

chronological order of the scenes in the original movie.

All this process can be triggered and monitored in real-time through a simple UI created

using Streamlite.

Seven tributes were generated, and their overall human evaluation was positive. On av-
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erage, our method led to average scores of 7.2, 6.8, and 6.9 on content selection, emotional

coherence, and overall evaluation on a scale from 1 to 10. The tributes that had the best scores

were ”Atonement” and ”Interstellar,” with an average of 8 points in all three criteria (con-

tent selection, emotional coherence, and overall evaluation), except in the overall evaluation

of ”Atonement,” reaching an average score of 7 points. ”Furious 7” obtained the worst scores,

with 6.25 points on overall evaluation, 6.5 on content selection criteria, and 5.6 on emotional

coherence criteria.

The more strongly correlated metrics are Content Selection and Emotional Coherence, and

Content Selection and Overall Evaluation. However, all metrics present a strong correlation

with each other.

5.2 Future Work

Regarding future work, we identified some actions in order to mitigate the majority of the

identified issues:

• Improving Emotional Coherence scores computation: We could modify the EmoMV

model, creating a third branch dedicated to extracting and processing the text embed-

dings of the subtitles if the scene has it, in a similar way that we do with the visual

and audio streams, so we could leverage more contextual information for computing the

emotional coherence scores;

• Experiment pre-training the EmoMV model with EmoMV-A and EmoMV-B datasets

(separately and all together): In the proposed pipeline, we used the EmoMV model pre-

trained on the EmoMV-C dataset, because, from the three, it is the one that related the

better with our problem. Nevertheless, it would be interesting to test the performance

of the architecture and the quality of the subsequently generated movie tributes by pre-

training the model with the other available datasets;

• Fine tune BERT with a dataset dedicated to the subtitle (movie dialog) format: We

gathered data comprising of complete srt files containing movie subtitles by contacting

directly the Open Subtitles Organization (OpenSubtitles, 2023) and, separately, the subtitles

of highlights to the collected movies. We obtained the latter by leveraging the YouTube
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API to retrieve the subtitles and metadata related to the videos containing highlights from

specific movies in the Movieclips Youtube channel (MovieclipsYoutubeChannel, 2023).

We did not develop this further because most of the collected subtitles from youtube

were automatically generated, possessing many discrepancies compared to the original

movie subtitles. We tried to clean and correct the dataset, but we would need to dive

deeper in order to be able to solve this issue completely, so we did not pursue it since it

was taking a long time and it was leading us out of the scope of this thesis;

• Improve Post-production: This work shows the importance of having an intuitive User

Interface to generate movie tributes. Being able to tweak some parameters with quick

visual feedback of the consequent changes in the tribute gives the user a lot of power and

control over the overall quality of the end product. That said, some improvements that

could be made regarding this part of the pipeline are: By default, we normalize the audio

of the movie highlights and the audio of the music before joining them. The problem

with this implementation is that the audio stream from the movie usually comprises a

much bigger spectrum of audio intensity (e.g., in ”Furious 7,” we have both scenes with

loud car noises and calm dialog). By normalizing all the movie segments’ audio together

(as in a single audio stream), the discrepancy between the loudness of both scenes is

maintained or even worsened. In order to solve this, we could normalize the audio from

each movie highlight separately and only then join everything together. Another helpful

feature would be to modify the offset and loudness adjustment parameters for each tribute

segment separately instead of together.
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