

Ciência_Iscte

Perfil Público

Aviso: [2025-12-25 06:40] este documento é uma impressão do portal Ciência_Iscte e foi gerado na data indicada. O documento tem um propósito meramente informativo e representa a informação contida no portal Ciência_Iscte nessa data.

Caroline Conti

Professora Auxiliar

Departamento de Ciências e Tecnologias da Informação (ISTA)

Investigadora Associada

Instituto de Telecomunicações - IUL (ISTA) [Grupo de Processamento de Sinal Multimédia]

Contactos	
E-mail	Caroline_Conti@iscte-iul.pt
Gabinete	D6.16

Currículo

Caroline Conti nasceu em Amparo, São Paulo, Brasil, em julho de 1985. Em 2010, licenciou-se em Engenharia Elétrica, com especialização em Eletrónica e Computação, pela Universidade de São Paulo, Brasil, com média de 16 valores. Em 2013, concluiu uma especialização avançada em Engenharia Eletrotécnica e de Computadores pelo Instituto Superior Técnico, em Portugal. Em 2017, obteve o grau de doutor em Ciências e Tecnologias da Informação pelo Iscte - Instituto Universitário de Lisboa (Iscte), com a classificação de Aprovado com Distinção (a classificação mais alta do doutoramento do Iscte). Em 2009, trabalhou como investigadora no Laboratório de Visão Computacional da Universidade de São Paulo, no Brasil, onde desenvolveu trabalho na área do reconhecimento de gestos para interação e colaboração entre seres humanos e robôs. Em 2010, passou a integrar o Grupo de Processamento de Sinal Multimédia do Instituto de Telecomunicações, em Lisboa, Portugal, onde atualmente ocupa o cargo de investigadora doutorada. Em 2013, passou também a integrar o corpo docente do Departamento de Ciências e Tecnologias da Informação do ISCTE - Instituto Universitário de Lisboa, Portugal, inicialmente como assistente e atualmente como professora auxiliar. Neste contexto, lecionou várias disciplinas das áreas de Ciência e Tecnologia da Programação (CTP) e Arquitetura de Computadores e Sistemas Operativos (ACSO). Em paralelo com estas atividades, tem colaborado como editora associada e editora convidada para várias revistas de renome internacional, como, por exemplo, a IEEE Transactions on Image Processing (Q1 nas bases de dados Web of Science e Scimago) e como Area Chair em conferências internacionais do IEEE (ICIP 2025). Adicionalmente, tem colaborado como revisora em várias revistas e conferências do IEEE, ACM e EURASIP. Participou também na organização de várias conferências e workshops nacionais e internacionais. Além disso, foi fundadora e é atualmente secretária do Capítulo Português da Signal Processing Society do IEEE. As suas principais áreas de trabalho científico são o processamento e a codificação de imagem e vídeo, tendo sido um dos investigadores pioneiros em Portugal a trabalhar com novas modalidades de imagens baseadas em campos de luz. Ao longo de quase 15 anos de

experiência de investigação em Portugal, teve a oportunidade de participar em dois projetos europeus e quatro nacionais na área das tecnologias visuais imersivas, colaborando ativamente com especialistas da academia e da indústria. Desta experiência, destacam-se o projeto europeu "3D-ConTourNet – 3D Content Creation, Coding and Transmission over Future Media Networks", no qual trabalhou como Task Force Leader e liderou um grupo de 14 investigadores de 6 países diferentes, e o estágio que desenvolveu na empresa Holografika Kft., de ecrãs de campo de luz, em Budapeste, Hungria. Até à data, publicou um editorial e 11 artigos em revistas de renome internacional, quatro capítulos em livros de editoras internacionais, 16 artigos em atas de conferências internacionais e cinco artigos em atas de conferências nacionais. De acordo com o Google Scholar, os seus trabalhos têm mais de 790 citações desde 2013 e um h-index de 13. Adicionalmente, conquistou várias bolsas de investigação competitivas, incluindo uma bolsa do Programa FCT de Estímulo ao Emprego Científico em 2017, na qual se classificou em primeiro lugar no país, na categoria de Investigador Júnior, na área das Ciências da Computação e da Informação, com pontuação máxima de 10 valores. O seu trabalho tem sido distinguido com vários prémios e menções honrosas em conferências e competições nacionais e internacionais, dos quais se destacam o Prémio Científico IBM, recebido em 2017 pelo seu trabalho em codificação de campos de luz, e a nomeação para o Best Paper Award da conferência EUSIPCO 2014.

Qualificações Académicas					
Universidade/Instituição	Tipo	Curso	Período		
ISCTE - Instituto Universitário de Lisboa	Doutoramento	Ciências e Tecnologias da Informação	2017		
Universidade de São Paulo	Licenciatura	Engenharia Elétrica (ênfase em eletrônica e computação)	2010		

Atividades l	_etivas			
Ano Letivo	Sem.	Nome da Unidade Curricular	Curso(s)	Coord
2025/2026	2°	Desenho e Análise de Algoritmos	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Sim
2025/2026	1°	Aprendizagem Profunda para Visão por Computador	Curso Institucional em Escola de Tecnologias e Arquitetura;	Não
2025/2026	1°	Programação Concorrente e Distribuída	Licenciatura em Engenharia Informática;	Não
2024/2025	2°	Desenho e Análise de Algoritmos	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Sim
2024/2025	1°	Programação Concorrente e Distribuída	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática; Licenciatura em Informática e Gestão de Empresas;	Não
2023/2024	2°	Desenho e Análise de Algoritmos	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Sim
2023/2024	2°	Desenvolvimento para A Internet e Aplicações Móveis		Não

2023/2024	1°	Programação Concorrente e Distribuída	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática; Licenciatura em Informática e Gestão de Empresas;	Não
2022/2023	2°	Algoritmos e Estruturas de Dados	Licenciatura em Informática e Gestão de Empresas (PL); Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática; Licenciatura em Informática e Gestão de Empresas; Licenciatura em Engenharia de Telecomunicações e Informática;	Não
2022/2023	1°	Programação Concorrente e Distribuída	Licenciatura em Engenharia Informática; Licenciatura em Informática e Gestão de Empresas;	Não
2021/2022	2°	Algoritmos e Estruturas de Dados	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática; Licenciatura em Informática e Gestão de Empresas; Licenciatura em Engenharia de Telecomunicações e Informática;	Não
2021/2022	1°	Programação Orientada para Objetos	Licenciatura em Engenharia Informática; Licenciatura em Informática e Gestão de Empresas; Licenciatura em Engenharia de Telecomunicações e Informática;	Não
2020/2021	2°	Microprocessadores	Licenciatura em Engenharia Informática (PL);	Não
2019/2020	2°	Microprocessadores	Licenciatura em Engenharia Informática;	Não
2019/2020	2°	Introdução à Programação		Não
2019/2020	1°	Fundamentos de Arquitetura de Computadores		Não
2018/2019	2°	Algoritmos e Estruturas de Dados		Não
2017/2018	2°	Algoritmos e Estruturas de Dados		Não
2017/2018	1°	Fundamentos de Arquitetura de Computadores	Licenciatura em Informática e Gestão de Empresas (PL); Licenciatura em Engenharia Informática (PL); Licenciatura em Informática e Gestão de Empresas;	Não
2017/2018	1°	Fundamentos de Arquitetura de Computadores	Licenciatura em Informática e Gestão de Empresas (PL); Licenciatura em Engenharia Informática (PL); Licenciatura em Informática e Gestão de Empresas;	Não
2015/2016	2°	Microprocessadores	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não
2015/2016	2°	Microprocessadores	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não

2015/2016	1º	Fundamentos de Arquitetura de Computadores	Licenciatura em Informática e Gestão de Empresas (PL); Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia de Telecomunicações e Informática;	Não
2015/2016	1º	Fundamentos de Arquitetura de Computadores	Licenciatura em Informática e Gestão de Empresas (PL); Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia de Telecomunicações e Informática;	Não
2014/2015	2°	Microprocessadores	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não
2014/2015	2°	Microprocessadores	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não
2014/2015	1°	Fundamentos de Arquitetura de Computadores	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não
2014/2015	1°	Fundamentos de Arquitetura de Computadores	Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não
2013/2014	2°	Excel Avançado		Não
2013/2014	2°	Introdução ao Word		Não
2013/2014	2°	Introdução ao Excel		Não
2013/2014	1°	Fundamentos de Arquitetura de Computadores	Licenciatura em Informática e Gestão de Empresas (PL); Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não
2013/2014	1°	Fundamentos de Arquitetura de Computadores	Licenciatura em Informática e Gestão de Empresas (PL); Licenciatura em Engenharia Informática (PL); Licenciatura em Engenharia Informática;	Não

Orientações

• Teses de Doutoramento

- Em curso

	Nome do Estudante	Título/Tópico	Língua	Estado	Instituição
1	Ramna Maqsood	Deteção multi-modal usando aprendizagem profunda	Inglês	Em curso	Iscte
2	Muhammad Zubair	Codificação e Transmissão de Campo de Luz usando Aprendizagem Profunda	Inglês	Em curso	Iscte
3	Ramna Maqsood	Multimodality fusion using deep learning	Inglês	Em curso	Iscte

4	Muhammad Zubair	Light field coding and transmission using deep learning	Inglês	Em curso	Iscte
5	Ricardo Alexandre Firmino de Melo	Design and Evaluation of a Framework for Real-Time Intelligent Video Manipulation 2025	Inglês	Em curso	Iscte

• Dissertações de Mestrado

- Em curso

	Nome do Estudante	Título/Tópico	Língua	Estado	Instituição
1	Pedro Parente Fonte Santa	Reconhecimento de Gestos Baseado em Câmeras de Eventos		Em curso	Iscte
2	André Filipe Santos da Silva Costa	Análise de movimento humano utilizando câmeras de eventos.		Em curso	Iscte
3	Pedro De Jesus Pereira Ferraz	Multimodal Scene Depth Estimation using LiDAR and Event SensorsEstimar profundidades de uma cena multimodal usando LiDAR e sensores de eventos		Em curso	Iscte
4	Alexandre Cortez Milharado	Reconstrução de imagens baseada em eventos para geração de vídeo a alta velocidade		Em curso	Iscte
5	João Afonso Troncão Fragoso	Super-resolução de conteúdo neuromórfico		Em curso	Iscte
6	Tiago José Martins Alves	Explicabilidade na deteção de deepfakes		Em curso	Iscte

- Terminadas

	Nome do Estudante	Título/Tópico	Língua	Instituição	Ano de Conclusão
1	Marta Almeida de Aragão Veiga Coelho	Aplicação para Inpainting de Campos de Luz	Inglês	Iscte	2022
2	Ronielson Baptista Lima	Detecção de Saliência de Campo de Luz usando Aprendizagem Profunda: Um Estudo Comparativo	Inglês	Iscte	2022

Total de Citações	
Web of Science®	503
Scopus	607

Publicações

• Revistas Científicas

- Artigo em revista científica

1	Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2025). Unsupervised angularly consistent 4D light field segmentation using hyperpixels and a graph neural network. IEEE Open Journal of Signal Processing. 6, 333-347 - N.° de citações Web of Science®: 1 - N.° de citações Google Scholar: 1
2	Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2023). Hyperpixels: Flexible 4D over-segmentation for dense and sparse light fields. IEEE Transactions on Image Processing. 32, 3790-3805 - N.º de citações Web of Science®: 3 - N.º de citações Scopus: 3 - N.º de citações Google Scholar: 6
3	Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2023). Efficient propagation method for angularly consistent 4D light field disparity maps. IEEE Access. 11, 63463-63474 - N.º de citações Web of Science®: 1 - N.º de citações Scopus: 2 - N.º de citações Google Scholar: 2
4	Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2021). ALFO: Adaptive light field over-segmentation. IEEE Access. 9, 131147-131165 - N.º de citações Web of Science®: 5 - N.º de citações Scopus: 7 - N.º de citações Google Scholar: 8
5	Conti, C., Soares, L. D. & Nunes, P. (2020). Dense light field coding: a survey. IEEE Access. 8, 49244-49284 - N.º de citações Web of Science®: 69 - N.º de citações Scopus: 74 - N.º de citações Google Scholar: 89
6	Conti, C., Soares, L. D. & Nunes, P. (2018). Light field coding with field of view scalability and exemplar-based inter-layer prediction. IEEE Transactions on Multimedia. 20 (11), 2905-2920 - N.º de citações Web of Science®: 28 - N.º de citações Scopus: 25 - N.º de citações Google Scholar: 30
7	Conti, C., Nunes, P. & Soares, L. D. (2018). Light field image coding with jointly estimated self-similarity bi- prediction. Signal Processing: Image Communication. 60, 144-159 - N.º de citações Web of Science®: 24 - N.º de citações Scopus: 23 - N.º de citações Google Scholar: 30
8	Conti, C., Soares, L. D. & Nunes, P. (2016). HEVC-based 3D holoscopic video coding using self-similarity compensated prediction. Signal Processing: Image Communication. 42, 59-78 - N.º de citações Web of Science®: 85 - N.º de citações Scopus: 89 - N.º de citações Google Scholar: 107
9	Conti, C., Nunes, P. & Soares, L. D. (2013). Inter-layer prediction scheme for scalable 3-D holoscopic video coding. IEEE Signal Processing Letters. 20 (8), 819-822 - N.º de citações Web of Science®: 26 - N.º de citações Scopus: 35 - N.º de citações Google Scholar: 40

- Editorial

Conti, C., Gotchev, A., Bregovic, R., Dansereau, D. G., Perra, C. & Fujii, T. (2024). Editorial: Special issue on light field imaging. Signal Processing: Image Communication. 129

• Livros e Capítulos de Livros

- Capítulo de livro

1	Conti, C., Nunes, P. & Soares, L. D. (2019). Impact of packet losses in scalable light field video coding. In Assunção P., Gotchev A. (Ed.), 3D Visual Content Creation, Coding and Delivery. (pp. 177-193). Cham: Springer.
2	Domaski, M., Grajek, T., Conti, C., Debono, C., Faria, S. M. M., Kovács, PStankiewicz, O. (2019). Emerging imaging technologies: trends and challenges. In P. A. Assunção, A. Gotchev (Ed.), 3D visual content creation, coding and delivery. (pp. 5-39). Cham: Springer. - N.º de citações Scopus: 2 - N.º de citações Google Scholar: 5
3	Conti, C., Soares, L. D., Nunes, P., Perra, C., Assunção, P. A., Sjöström, MJennehag, U. (2019). Light field image compression. In Assunção P., Gotchev A. (Ed.), 3D Visual Content Creation, Coding and Delivery. (pp. 143-176). Cham: Springer. - N.º de citações Scopus: 2 - N.º de citações Google Scholar: 5
4	Conti, C., Soares, L. & Nunes, P. (2015). 3D Holoscopic Video Representation and Coding Technology. In Ahmet Kondoz, Tasos Dagiuklas (Ed.), Novel 3D Media Technologies. (pp. 71-96). Nova lorque, EUA: Springer New York. - N.º de citações Google Scholar: 2

• Conferências/Workshops e Comunicações

- Publicação em atas de evento científico

1	Ramna Maqsood, Nunes, P., Soares, L. D. & Conti, C. (2025). Efficient Frequency-Aware Multiscale Vision Transformer for Event-to-Video Reconstruction. In 2025 33rd European Signal Processing Conference (EUSIPCO). (pp. 606-610). Palermo, Italy: IEEE.
2	Ramna Maqsood, Nunes, P., Conti, C. & Soares, L. D. (2025). WaveE2VID: Frequency-Aware Event-Based Video Reconstruction. In 2025 IEEE International Conference on Image Processing (ICIP). (pp. 570-575). Anchorage, AK, USA: IEEE.
3	Zubair, M., Nunes, P., Conti, C. & Soares, L. D. (2025). Swinscale-LFVS: Parallel Feature Integration for Light Field View Synthesis. In 2025 IEEE International Conference on Image Processing (ICIP). (pp. 1942-1947). Anchorage, AK, USA: IEEE.
4	Zubair, M., Nunes, P., Conti, C. & Soares, L. D. (2024). Light field view synthesis using deformable convolutional neural networks. In 2024 Picture Coding Symposium, PCS 2024, Proceedings. (pp. 1-5). Taichung, Taiwan: IEEE N.º de citações Scopus: 2 - N.º de citações Google Scholar: 3

5	Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2022). View-consistent 4D Light Field style transfer using neural networks and over-segmentation. In 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP). Nafplio: IEEE N.º de citações Scopus: 1 - N.º de citações Google Scholar: 2
6	Hamad, M., Conti, C., Almeida, A. M. de., Nunes, P. & Soares, L. D. (2021). SLFS: Semi-supervised light-field foreground-background segmentation. In 2021 Telecoms Conference (ConfTELE). Leiria: IEEE N.º de citações Scopus: 3 - N.º de citações Google Scholar: 5
7	Conti, C., Soares, L. D. & Nunes, P. (2018). Scalable light field coding with support for region of interest enhancement. In 2018 26th European Signal Processing Conference (EUSIPCO). (pp. 1855-1859). Roma: IEEE N.º de citações Web of Science®: 5 - N.º de citações Scopus: 5 - N.º de citações Google Scholar: 6
8	Conti, C., Nunes, P. & Ducla Soares, L. (2017). Weighted bi-prediction for light field image coding. In Tescher A.G. (Ed.), Applications of Digital Image Processing XL 2017. San Diego: SPIE. - N.º de citações Scopus: 1 - N.º de citações Google Scholar: 1
9	Conti, C., Nunes, P. & Soares, L. D. (2016). HEVC-based light field image coding with bi-predicted self-similarity compensation. In 2016 IEEE International Conference on Multimedia & Description (ICMEW). Seattle, WA, USA: IEEE. - N.º de citações Web of Science®: 58 - N.º de citações Scopus: 82 - N.º de citações Google Scholar: 104
10	Monteiro, R., Lucas, L., Conti, C., Nunes, P., Rodrigues, N., Faria, SSoares, L. (2016). Light field HEVC-based image coding using locally linear embedding and self-similarity compensated prediction. In 2016 IEEE International Conference on Multimedia and Expo Workshops (ICMEW). Seattle, WA, USA: IEEE. - N.º de citações Web of Science®: 78 - N.º de citações Scopus: 74 - N.º de citações Google Scholar: 104
11	Conti, C., Soares, L. D. & Nunes, P. (2016). Improved inter-layer prediction for Light field content coding with display scalability. In Tescher A. G. (Ed.), Proceedings of SPIE Optical Engineering + Applications - Applications of Digital Image Processing XXXIX. San Diego: SPIE. - N.º de citações Web of Science®: 1 - N.º de citações Google Scholar: 3
12	Ricardo Monteiro, Conti, C., Nunes, P., N. Rodrigues, S. M. M. Faria & Soares, L. (2015). HEVC Compatible 3D Holoscopic Image Coding using Multiple Partitions. In Conference on Telecommunications (ConfTele). (pp. 1-4). Aveiro
13	Conti, C., Nunes, P. & Soares, L. D. (2014). Impact of packet losses in scalable 3D holoscopic video coding. In Schelkens, P., Ebrahimi, T., Cristóbal, G., Truchetet, F., and Saarikko, P. (Ed.), SPIE Photonics Europe - Optics, Photonics, and Digital Technologies for Multimedia Applications III. Bruxelas: Society of Photo-Optical Instrumentation Engineers. - N.º de citações Scopus: 1 - N.º de citações Google Scholar: 3

14	Conti, C., Lucas, L., Nunes, P., Soares, L., Rodrigues, N., Pagliari, CFaria, S. (2014). Locally linear embedding-based prediction for 3D holoscopic image coding using HEVC. In Proceedings of the 22nd European Signal Processing Conference (EUSIPCO). Lisbon: IEEE. - N.º de citações Web of Science®: 51 - N.º de citações Scopus: 48 - N.º de citações Google Scholar: 62
15	Conti, C., Kovács, P., Balogh, T., Nunes, P. & Soares, L. (2014). Light-field video coding using geometry-based disparity compensation. In 3DTV-Conference: The true vision: capture, transmission and display of 3D video (3DTV-CON), Proceedings. (pp. 1-4). Budapest: IEEE N.º de citações Scopus: 14 - N.º de citações Google Scholar: 30
16	A. Aggoun, O. Fatah, J. Fernández, Conti, C., Nunes, P. & Soares, L. (2013). Acquisition, processing and coding of 3D holoscopic content for immersive video systems. In 3DTV-Conference (3DTV-CON). (pp. 1-4). Aberdeen: IEEE. - N.º de citações Scopus: 13 - N.º de citações Google Scholar: 19
17	Conti, C., Nunes, P. & Soares, L. (2013). Using self-similarity compensation for improving inter-layer prediction in scalable 3D holoscopic video coding. In SPIE Optics and Photonics - Applications of Digital Image Processing XXXVI. (pp. 1-13). San Diego, California, EUA: SPIE. - N.º de citações Web of Science®: 2 - N.º de citações Scopus: 6 - N.º de citações Google Scholar: 8
18	Conti, C., Nunes, P. & Soares, L. (2013). 3D Holoscopic Video Coding Based on HEVC with Improved Spatial and Temporal Prediction. In Conference on Telecommunications (ConfTele). (pp. 1-4). Castelo Branco - N.º de citações Google Scholar: 3
19	Conti, C., Lino, J., Nunes, P. & Soares, L. D. (2012). Spatial and temporal prediction scheme for 3D holoscopic video coding based on H.264/AVC. In 2012 19th International Packet Video Workshop (PV). (pp. 143-148). Munich-Garching: IEEE N.º de citações Scopus: 6 - N.º de citações Google Scholar: 13
20	Conti, C., Nunes, P. & Soares, L. (2012). New HEVC Prediction Modes for 3D Holoscopic Video Coding. In IEEE (Ed.), IEEE International Conference on Image Processing (ICIP). (pp. 1325-1328). Orlando: IEEE. - N.º de citações Web of Science®: 38 - N.º de citações Scopus: 45 - N.º de citações Google Scholar: 63
21	Conti, C., Soares, L. & Nunes, P. (2012). Influence of Self-Similarity on 3D Holoscopic Video Coding Performance. In Brazilian Symposium on Multimedia and the Web (WebMedia). (pp. 131-134). São Paulo: ACM. - N.º de citações Scopus: 10 - N.º de citações Google Scholar: 13
22	Conti, C., J. Lino, P. Nunes, L. D. Soares & P. L. Correia (2011). Improved Spatial Prediction for 3D Holoscopic Image and Video Coding. In EURASIP (Ed.), European Signal Processing Conference (EUSIPCO). (pp. 378-382). Barcelona: EURASIP. - N.º de citações Web of Science®: 8 - N.º de citações Scopus: 8 - N.º de citações Google Scholar: 13

Conti, C., Lino, J., Nunes, P., Soares, L. D. & Correia, P. L. (2011). Spatial prediction based on self-similarity compensation for 3D holoscopic image and video coding. In IEEE (Ed.), 18th IEEE International Conference on Image Processing. (pp. 961-964). Brussels: IEEE.

- N.º de citações Web of Science®: 19

- N.º de citações Scopus: 23

- N.º de citações Google Scholar: 34

- Comunicação em evento científico

1	Ramna Maqsood, Nunes, P., Soares, L. D. & Conti, C. (2025). Efficient Frequency-Aware Multiscale Vision Transformer for Event-to-Video Reconstruction. 2025 33rd European Signal Processing Conference (EUSIPCO).
2	Ramna Maqsood, Nunes, P., Conti, C. & Soares, L. D. (2025). WaveE2VID: Frequency-Aware Event-Based Video Reconstruction. 2025 IEEE International Conference on Image Processing (ICIP).
3	Zubair, M., Nunes, P., Conti, C. & Soares, L. D. (2025). Swinscale-LFVS: Parallel Feature Integration for Light Field View Synthesis. 2025 IEEE International Conference on Image Processing (ICIP).
4	Zubair, M., Nunes, P., Conti, C. & Soares, L. D. (2024). Light Field View Synthesis Using Deformable Convolutional Neural Networks. 2024 Picture Coding Symposium (PCS).
5	Hamad, M., Conti, C., Nunes, P. & Soares, L. D. (2022). View-consistent 4D Light Field Style Transfer using Neural Networks and Over-segmentation. 2022 IEEE 14th Image, Video, and Multidimensional Signal Processing Workshop (IVMSP).
6	Hamad, M., Conti, C., de Almeida, A., Nunes, P. & Soares, L. D. (2021). SLFS: Semi-supervised Light-field Foreground-background Segmentation. 2021 Telecoms Conference (ConfTELE).
7	Conti, C. (2021). Light Field Processing: Challenges and Solutions. IEEE Seasonal School on Digital Processing of Visual Signals and Applications (DPVSA).
8	Conti, C., Soares, L. D. & Nunes, P. (2018). Scalable Light Field Coding with Support for Region of Interest Enhancement. European Signal Processing Conference (EUSIPCO).
9	Conti, C., Nunes, P. & Soares, L. D. (2017). Weighted bi-prediction for light field image coding. Applications of Digital Image Processing XL.
10	Conti, C., Nunes, P. & Soares, L. (2016). HEVC-Based Light Field Image Coding with Bi-Predicted Self-Similarity Compensation. IEEE International Conference on Multimedia and Expo Workshops - ICMEW. 1-4
11	Conti, C., Soares, L. & Nunes, P. (2016). Improved inter-layer prediction for light field content coding with display scalability. SPIE Optics and Photonics - Applications of Digital Image Processing XXXIX. 9971 - N.º de citações Web of Science®: 1 - N.º de citações Scopus: 3
12	Ricardo Monteiro, L. Lucas, Conti, C., Nunes, P., N. Rodrigues, S. M. M. FariaSoares, L. (2016). Light Field HEVC-Based Image Coding using Locally Linear Embedding and Self-Similarity Compensated Prediction. IEEE International Conference on Multimedia and Expo Workshops - ICMEW. 1-4
13	Ricardo Monteiro, Conti, C., Nunes, P., N. Rodrigues, S. M. M. Faria & Soares, L. (2015). HEVC Compatible 3D Holoscopic Image Coding using Multiple Partitions. Conference on Telecommunications (ConfTele). 1-4

14	Conti, C., P. Kovács, T. Balogh, Nunes, P. & Soares, L. (2014). Light-Field Video Coding Using Geometry-Based Disparity Compensation. 3DTV-Conference (3DTV-CON). 1, 1-4
15	Conti, C., L. Lucas, Nunes, P., Soares, L., N. Rodrigues, C. L. PagliariS. M. M. Faria (2014). Locally Linear Embedding-Based Prediction for 3D Holoscopic Image Coding Using HEVC. European Signal Processing Conference (EUSIPCO). 1, 1-5
16	Conti, C., Nunes, P. & Soares, L. (2014). Impact of packet losses in scalable 3D holoscopic video coding. SPIE Photonics Europe - Optics, Photonics, and Digital Technologies for Multimedia Applications III. 9138, 91380E-91380E-15
17	A. Aggoun, O. Fatah, J. Fernández, Conti, C., Nunes, P. & Soares, L. (2013). Acquisition, processing and coding of 3D holoscopic content for immersive video systems. 3DTV-Conference (3DTV-CON). 1-4
18	Conti, C., Nunes, P. & Soares, L. (2013). Using self-similarity compensation for improving inter-layer prediction in scalable 3D holoscopic video coding. SPIE Optics and Photonics - Conference on Applications of Digital Image Processing XXXVI. 8856, 88561K-88561K-13
19	Conti, C., Nunes, P. & Soares, L. (2013). 3D Holoscopic Video Coding Based on HEVC with Improved Spatial and Temporal Prediction. Conference on Telecommunications (ConfTele). 1-4
20	Conti, C., Nunes, P. & Soares, L. (2012). New HEVC prediction modes for 3D holoscopic video coding. IEEE International Conference on Image Processing (ICIP). 1325-1328
21	Conti, C., J. Lino, Nunes, P. & Soares, L. (2012). Spatial and temporal prediction scheme for 3D holoscopic video coding based on H.264/AVC. 19th International Packet Video Workshop (PV). 143-148
22	Conti, C., Soares, L. & Nunes, P. (2012). Influence of self-similarity on 3D holoscopic video coding performance. Brazilian symposium on Multimedia and the web (WebMedia). 131-134
23	Conti, C., J. Lino, Nunes, P., Soares, L. & P. L. Correia (2011). Spatial Prediction Based on Self-Similarity Compensation for 3D Holoscopic Image and Video Coding. 18th IEEE International Conference on Image Processing (ICIP). 961-964

• Outras Publicações

- Artigo sem avaliação científica

Conti, C., Nunes, P. & Soares, L. (2014). Display Scalable 3D Holoscopic Video Coding. IEEE COMSOC MMTC E-Letter. 9 (3), 12-15 - N.º de citações Google Scholar: 1

Projetos de Investigação				
Título do Projeto	Papel no Projeto	Parceiros	Período	
Light Field Processing for Immersive Media Streaming Applications	Coordenadora Local	IT-lscte, IT - Líder (Portugal)	2021 - 2024	

Light Field Processing and Encoding System	Investigadora	IT-Iscte (MSP-IUL)	2016 - 2018
Scalable Error Resilient 3D Holoscopic Video Coding for Immersive Systems	Investigadora	IT-Iscte	2014 - 2016

Cargos de Gestão Académica

Membro (2025 - 2028) Unidade/Área: Comissão Científica

Coordenador do 1º Ano (2025 - 2027) Unidade/Área: Mestrado em Engenharia Informática

Coordenador do 2º Ano (2025 - 2027) Unidade/Área: Mestrado em Engenharia Informática

Director (2025 - 2027) Unidade/Área: Mestrado em Engenharia Informática

Coordenador do 3º Ano (2024 - 2025) Unidade/Área: Licenciatura em Engenharia Informática (PL)

Coordenador do 3º Ano (2024 - 2025) Unidade/Área: Licenciatura em Engenharia Informática

Prémios

Prémio Científico IBM (2017)

Organização/Coordenação de Eventos					
Tipo de Organização/Coordenação	Título do Evento	Entidade Organizadora	Ano		
Membro de comissão organizadora de evento científico	IEEE SPS Distinguished Lecture - Prof. Farhan Baqai (Apple, USA)	Portuguese Chapter of IEEE Signal Processing Society / PhD Program in Information Science and Technology of Iscte	Desde 2024		
Membro de comissão organizadora de evento científico	10th European Workshop on Visual Information Processing (EUVIP)	IEEE Signal Processing Society	2022		

Actividades de Difusão			
Tipo de Actividade	Título do Evento	Descrição da Actividade	Ano

Actividades de Edição/Revisão Científica				
Tipo de Actividade	Título da Revista	ISSN/Quartil	Perío do	Língua
Membro de equipa editorial de revista	IEEE Transactions on Image Processing	1941-0042	2023 - 2026	Português