Artigo em revista científica Q1
Enabling Lorentz boosted frame particle-in-cell simulations of laser wakefield acceleration in quasi-3D geometry
Peicheng Yu (Yu, P.); Xinlu Xu (Xu, X.); Asher Davidson (Davidson, A.); Adam Tableman (Tableman, A.); Thamine Dalichaouch (Dalichaouch, T.); Fei Li (Li, F.); Michael David Meyers (Meyers, M. D.); Weiming An (An, W.); Frank S. Tsung (Tsung, F. S.); Viktor K. Decyk (Decyk, V. K.); Frederico Fiuza (Fiuza, F.); Jorge Vieira (Vieira, J.); Ricardo Fonseca (Fonseca, R. A.); Wei Lu (Lu, W.); Luís Miguel Oliveira e Silva (Silva, L. O.); Warren B. Mori (Mori, W. B.); et al.
Título Revista
Journal of Computational Physics
Ano (publicação definitiva)
2016
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 10

(Última verificação: 2024-04-19 12:56)

Ver o registo na Web of Science®


: 0.4
Scopus

N.º de citações: 7

(Última verificação: 2024-04-19 13:20)

Ver o registo na Scopus


: 0.2
Google Scholar

N.º de citações: 18

(Última verificação: 2024-04-18 02:28)

Ver o registo no Google Scholar

Abstract/Resumo
When modeling laser wakefield acceleration (LWFA) using the particle-in-cell (PIC) algorithm in a Lorentz boosted frame, the plasma is drifting relativistically at beta(b)c towards the laser, which can lead to a computational speedup of similar to gamma(2)(b)=(1-beta(2)(b))-1. Meanwhile, when LWFA is modeled in the quasi-3D geometry in which the electromagnetic fields and current are decomposed into a limited number of azimuthal harmonics, speedups are achieved by modeling three dimensional (3D) problems with the computational loads on the order of two dimensional r-z simulations. Here, we describe a method to combine the speedups from the Lorentz boosted frame and quasi-3D algorithms. The key to the combination is the use of a hybrid Yee-FFT solver in the quasi-3D geometry that significantly mitigates the Numerical Cerenkov Instability (NCI) which inevitably arises in a Lorentz boosted frame due to the unphysical coupling of Langmuir modes and EM modes of the relativistically drifting plasma in these simulations. In addition, based on the space-time distribution of the LWFA data in the lab and boosted frame, we propose to use a moving window to follow the drifting plasma, instead of following the laser driver as is done in the LWFA lab frame simulations, in order to further reduce the computational loads. We describe the details of how the NCI is mitigated for the quasi-3D geometry, the setups for simulations which combine the Lorentz boosted frame, quasi-3D geometry, and the use of a moving window, and compare the results from these simulations against their corresponding lab frame cases. Good agreement is obtained among these sample simulations, particularly when there is no self-trapping, which demonstrates it is possible to combine the Lorentz boosted frame and the quasi-3D algorithms when modeling LWFA. We also discuss the preliminary speedups achieved in these sample simulations.
Agradecimentos/Acknowledgements
--
Palavras-chave
PIC simulation,Hybrid Maxwell solver,Relativistic plasma drift,Numerical Cerenkov Instability,Quasi-3D algorithm,Lorentz boosted frame,Moving window
  • Matemáticas - Ciências Naturais
  • Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
ACCELERATES European Research Council