Artigo em revista científica Q1
Multimodal approach for emotion recognition based on simulated flight experiments
Válber Roza (Roza, V.); Octavian Postolache (Postolache, O.);
Título Revista
Sensors
Ano
2019
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

N.º de citações: 0

(Última verificação: 2020-09-22 06:50)

Ver o registo na Web of Science®

Scopus

N.º de citações: 0

(Última verificação: 2020-09-22 00:06)

Ver o registo na Scopus

Abstract/Resumo
The present work tries to fill part of the gap regarding the pilots' emotions and their bio-reactions during some flight procedures such as, takeoff, climbing, cruising, descent, initial approach, final approach and landing. A sensing architecture and a set of experiments were developed, associating it to several simulated flights ( N f l i g h t s = 13 ) using the Microsoft Flight Simulator Steam Edition (FSX-SE). The approach was carried out with eight beginner users on the flight simulator ( N p i l o t s = 8 ). It is shown that it is possible to recognize emotions from different pilots in flight, combining their present and previous emotions. The cardiac system based on Heart Rate (HR), Galvanic Skin Response (GSR) and Electroencephalography (EEG), were used to extract emotions, as well as the intensities of emotions detected from the pilot face. We also considered five main emotions: happy, sad, angry, surprise and scared. The emotion recognition is based on Artificial Neural Networks and Deep Learning techniques. The Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) were the main methods used to measure the quality of the regression output models. The tests of the produced output models showed that the lowest recognition errors were reached when all data were considered or when the GSR datasets were omitted from the model training. It also showed that the emotion surprised was the easiest to recognize, having a mean RMSE of 0.13 and mean MAE of 0.01; while the emotion sad was the hardest to recognize, having a mean RMSE of 0.82 and mean MAE of 0.08. When we considered only the higher emotion intensities by time, the most matches accuracies were between 55% and 100%.
Agradecimentos/Acknowledgements
--
Palavras-chave
Emotion recognition,Physiological sensing,Multimodal sensing,Deep learning,Flight simulation
  • Ciências Físicas - Ciências Naturais
  • Ciências Químicas - Ciências Naturais
  • Ciências Biológicas - Ciências Naturais
  • Outras Engenharias e Tecnologias - Engenharia e Tecnologia
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
  • Medicina Clínica - Ciências Médicas
  • Outras Ciências Médicas - Ciências Médicas
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/EEA/50008/2019 Fundação para a Ciência e a Tecnologia