Capítulo de livro
Logical discriminant models
Margarida G. M. S. Cardoso (Cardoso, M. G. M. S.);
Título Livro
Quantitative modelling in marketing and management
Ano (publicação definitiva)
2012
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

N.º de citações: 5

(Última verificação: 2024-12-17 06:12)

Ver o registo na Scopus

Google Scholar

Esta publicação não está indexada no Google Scholar

Abstract/Resumo
Discriminant analysis aims to classify multivariate observations into a priori defined classes and explain the differences between them. Logical discriminant type models - trees and rules - emerge in this context and within the data mining framework as powerful predictive tools that generate very easy to interpret results. Moreover, they generally provide means to deal with explantory variables of different measurement levels (quantitative and qualitative), good handling of missing data and robustness. These characteristics are particularly appreciated in management decision support. Discriminant analysis basic concepts and trees and rules algorithms are presented in this chapter. General issues concerning the evaluation of discriminant analysis and the key concept of diversity are outlined first. Tree algorithms, successively dividing a set of observations to conquer less diversity and increase accuracy, are described next. The induction of propositional rules, whether based on trees or yielded by a set covering approach, is also described. An application in retail and specific algorithms (e.g., CART, C5, CN2 and LEM) illusrate the logical discriminant methodologies. Final remarks provide a contextualisation of the diversity of contributions in this domain.
Agradecimentos/Acknowledgements
--
Palavras-chave
Classification,Decision rule,Decision trees,Discriminant analysis
  • Ciências Físicas - Ciências Naturais