Artigo em revista científica Q1
Long memory and volatility clustering: is the empirical evidence consistent across stock markets?
Sónia Bentes (Bentes, S. R.); Rui Menezes (Menezes, R.); Diana Mendes (Mendes, D. A.);
Título Revista
Physica A
Ano (publicação definitiva)
2008
Língua
Inglês
País
Países Baixos (Holanda)
Mais Informação
Web of Science®

N.º de citações: 71

(Última verificação: 2024-12-17 15:14)

Ver o registo na Web of Science®


: 2.0
Scopus

N.º de citações: 76

(Última verificação: 2024-12-15 06:33)

Ver o registo na Scopus


: 1.9
Google Scholar

N.º de citações: 137

(Última verificação: 2024-12-15 20:18)

Ver o registo no Google Scholar

Abstract/Resumo
Long memory and volatility clustering are two stylized facts frequently related to financial markets. Traditionally, these phenomena have been studied based on conditionally heteroscedastic models like ARCH, GARCH, IGARCH and FIGARCH, inter alia. One advantage of these models is their ability to capture nonlinear dynamics. Another interesting manner to study the volatility phenomenon is by using measures based on the concept of entropy. In this paper we investigate the long memory and volatility clustering for the SP 500, NASDAQ 100 and Stoxx 50 indexes in order to compare the US and European Markets. Additionally, we compare the results from conditionally heteroscedastic models with those from the entropy measures. In the latter, we examine Shannon entropy, Renyi entropy and Tsallis entropy. The results corroborate the previous evidence of nonlinear dynamics in the time series considered.
Agradecimentos/Acknowledgements
--
Palavras-chave
Long memory,Volatility clustering,ARCH type models,Nonlinear dynamics,Entropy
  • Ciências Físicas - Ciências Naturais