Artigo em revista científica Q2
Fuzzy approach to discrete data reduction: an application in economics for assessing the skill premium
Abdul Suleman (Suleman, A.); Fátima Suleman (Suleman, F.); Elizabeth Reis (Reis, E.);
Título Revista
Journal of Business Economics and Management
Ano (publicação definitiva)
2016
Língua
Inglês
País
Lituânia
Mais Informação
Web of Science®

N.º de citações: 1

(Última verificação: 2024-12-21 13:41)

Ver o registo na Web of Science®


: 0.1
Scopus

N.º de citações: 2

(Última verificação: 2024-12-14 17:17)

Ver o registo na Scopus


: 0.1
Google Scholar

N.º de citações: 9

(Última verificação: 2024-12-21 11:58)

Ver o registo no Google Scholar

Abstract/Resumo
Measures of stock of skills alternative to human capital have raised fresh difficulties, especially in data managing. We propose to empirically compare the efficiency of a hierarchical cluster analysis and a fuzzy clustering in reducing discrete skill data. The outcomes of both methods are subsequently used to measure the impact of skills on earnings in addition to human capital. The proposed methodological comparison was made using an original dataset of retail bankers’ skills assessed by supervisors. Empirical evidence shows that the fuzzy approach is more efficient than the hierarchical clustering: the resulting clusters are fewer and easier to interpret. Furthermore, the earnings equation enriched with skill variables allowed us to correct the education premium, and provides information on monetary incentives related to individual skills. Our paper attempts to raise researchers’ and practitioners’ awareness of data reducing methods, and their implications for wage determinants.
Agradecimentos/Acknowledgements
--
Palavras-chave
Human capital,Skills,Earnings,Data reduction,Hierarchical cluster analysis,Fuzzy sets,Grade of membership model
  • Economia e Gestão - Ciências Sociais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/GES/00315/2013 Fundação para a Ciência e a Tecnologia
UID/SOC/03127/2013 Fundação para a Ciência e a Tecnologia