Publicação em atas de evento científico
Clustering Stability and Ground Truth: Numerical Experiments
Maria José Amorim (Amorim, M. J.); Margarida G. M. S. Cardoso (Cardoso, M. G. M. S.);
Proceedings of the 7th International Joint Conference on Knowledge Discovery, Knowledge Engineering and Knowledge Management
Ano (publicação definitiva)
2015
Língua
Inglês
País
Portugal
Mais Informação
--
Web of Science®

N.º de citações: 1

(Última verificação: 2024-12-21 17:59)

Ver o registo na Web of Science®

Scopus

N.º de citações: 1

(Última verificação: 2024-12-14 16:18)

Ver o registo na Scopus

Google Scholar

Esta publicação não está indexada no Google Scholar

Abstract/Resumo
Stability has been considered an important property for evaluating clustering solutions. Nevertheless, there are no conclusive studies on the relationship between this property and the capacity to recover clusters inherent to data (“ground truth”). This study focuses on this relationship resorting to synthetic data generated under diverse scenarios (controlling relevant factors). Stability is evaluated using a weighted cross-validation procedure. Indices of agreement (corrected for agreement by chance) are used both to assess stability and external validation. The results obtained reveal a new perspective so far not mentioned in the literature. Despite the clear relationship between stability and external validity when a broad range of scenarios is considered, within-scenarios conclusions deserve our special attention: faced with a specific clustering problem (as we do in practice), there is no significant relationship between stability and the ability to recover data clusters.
Agradecimentos/Acknowledgements
--
Palavras-chave
  • Ciências Físicas - Ciências Naturais