Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Título Revista
International Journal of Data Analysis Techniques and Strategies
Ano (publicação definitiva)
2016
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Google Scholar
Esta publicação não está indexada no Google Scholar
Abstract/Resumo
When conducting discrete discriminant analysis, alternative models provide different levels of predictive accuracy which has encouraged the research in combined models. This research seems to be specially promising when small or moderate sized samples are considered, which often occurs in practice. In this work we evaluate the performance of a linear combination of two discrete discriminant analysis models: the first-order independence model and the dependence trees model. The proposed methodology also uses a hierarchical coupling model when addressing multi-class classification problems, decomposing the multi-class problems into several bi-class problems, using a binary tree structure. The analysis is based both on simulated and real datasets. Results of the proposed approach are compared with those obtained by random forests, being generally more accurate. Measures of precision regarding a training set, a test set and cross-validation are presented. The R software is used for the algorithms' implementation.
Agradecimentos/Acknowledgements
--
Palavras-chave
Combining models,DDA,Dependence trees model,Discrete discriminant analysis,DTM,First-order independence model,FOIM,Hierarchical coupling model,HIERM,Random forest,RF
Classificação Fields of Science and Technology
- Matemáticas - Ciências Naturais
- Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
UID/GES/00315/2013 | Fundação para a Ciência e a Tecnologia |