Ciência-IUL
Publicações
Descrição Detalhada da Publicação
3D PIC simulations of collisionless shocks at lunar magnetic anomalies and their role in forming lunar swirls
Título Revista
Astrophysical Journal
Ano (publicação definitiva)
2016
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®
Scopus
Google Scholar
Abstract/Resumo
Investigation of the lunar crustal magnetic anomalies offers a comprehensive long-term data set of observations of small-scale magnetic fields and their interaction with the solar wind. In this paper a review of the observations of lunar mini-magnetospheres is compared quantifiably with theoretical kinetic-scale plasma physics and 3D particle- in-cell simulations. The aim of this paper is to provide a complete picture of all the aspects of the phenomena and to show how the observations from all the different and international missions interrelate. The analysis shows that the simulations are consistent with the formation of miniature (smaller than the ion Larmor orbit) collisionless shocks and miniature magnetospheric cavities, which has not been demonstrated previously. The simulations reproduce the finesse and form of the differential proton patterns that are believed to be responsible for the creation of both the “lunar swirls” and “dark lanes.” Using a mature plasma physics code like OSIRIS allows us, for the first time, to make a side-by-side comparison between model and space observations. This is shown for all of the key plasma parameters observed to date by spacecraft, including the spectral imaging data of the lunar swirls. The analysis of miniature magnetic structures offers insight into multi-scale mechanisms and kinetic-scale aspects of planetary magnetospheres.
Agradecimentos/Acknowledgements
--
Palavras-chave
Acceleration of particles,Magnetic fields,Moon,Planets and satellites,Plasmas,Shock waves
Classificação Fields of Science and Technology
- Ciências Físicas - Ciências Naturais
Registos de financiamentos
Referência de financiamento | Entidade Financiadora |
---|---|
SFRH/BD/75558/2010 | Fundação para a Ciência e a Tecnologia |
ACCELERATES | European Research Council |