Artigo em revista científica Q3
Principal components analysis with spline optimal transformations for continuous data
Nuno Lavado (Lavado, N); Teresa Calapez (Calapez, T.);
Título Revista
IAENG International Journal of Applied Mathematics
Ano (publicação definitiva)
2011
Língua
Inglês
País
Hong Kong (Região Administrativa Especial da República Popular da China)
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

N.º de citações: 6

(Última verificação: 2024-12-15 16:09)

Ver o registo na Scopus


: 0.4
Google Scholar

N.º de citações: 10

(Última verificação: 2024-12-21 09:45)

Ver o registo no Google Scholar

Abstract/Resumo
A new approach to generalize Principal Components Analysis in order to handle nonlinear structures has been recently proposed by the authors: quasi-linear PCA (qlPCA). It includes spline transformation of the original variables and the qualifier quasi was chosen to emphasize the exclusive use of linear splines. Alternating least squares fitting of a suitable objective loss function is the mechanism for achieving spline optimal transformation and nonlinear principal components. Optimal transformations are explicitly known after convergence and allow a straightforward projection of new observations onto the nonlinear principal components space as well as reconstruction the original variables. QlPCA reports model summary in a linear PCA fashion and allows the introduction of the piecewise loadings concept. This paper provides further details on qlPCA and its properties. Results of a simulation study are also presented.
Agradecimentos/Acknowledgements
--
Palavras-chave
CATPCA; Linear PCA; Nonlinear principal components analysis; qLPCA
  • Matemáticas - Ciências Naturais