Artigo em revista científica Q1
Acceleration of electrons in the plasma wakefield of a proton bunch
Erik Adli (Adli, E.); A. Ahuja (Ahuja, A.); O. Apsimon (Apsimon, O.); R. Apsimon (Apsimon, R.); Anna-Maria Bachmann (Bachmann, A.-M.); D. Barrientos (Barrientos, D.); Fabian Batsch (Batsch, F.); Jeremie Bauche (Bauche, J.); Veronica K. Berglyd Olsen (Berglyd Olsen, V. K.); M. Bernardini (Bernardini, M.); Thomas Bohl (Bohl, T.); Chiara Bracco (Bracco, C.); F. Braunmuller (Braunmuller, F.); Graeme Burt (Burt, G.); Birger Buttenschön (Buttenschön, B.); Allen Caldwell (Caldwell, A.); Michele Cascella (Cascella, M.); J. Chappell (Chappell, J.); Eric Chevallay (Chevallay, E.); M. Chung (Chung, M.); D. Cooke (Cooke, D.); Heiko Damerau (Damerau, H.); Lawrence Deacon (Deacon, L.); L. H. Deubner (Deubner, L. H.); A. Dexter (Dexter, A.); Steffen Doebert (Doebert, S.); John Farmer (Farmer, J.); Valentin Fedosseev (Fedosseev, V. N.); Ralph Fiorito (Fiorito, R.); Ricardo Fonseca (Fonseca, R. A.); Florence Friebel (Friebel, F.); L. Garolfi (Garolfi, L.); S. Gessner (Gessner, S.); I Gorgisyan (Gorgisyan, I.); A. A. Gorn (Gorn, A. A.); E. Granados (Granados, E.); O. Grulke (Grulke, O.); E. Gschwendtner (Gschwendtner, E.); Jens Hansen (Hansen, J.); Anton Helm (Helm, A.); J. R. Henderson (Henderson, J. R.); M. Hüther (Hüther, M.); M. Ibison (Ibison, M.); Lars Jensen (Jensen, L.); Simon W. Jolly (Jolly, S.); F. Keeble (Keeble, F.); S-Y Kim (Kim, S.-Y.); F. Kraus (Kraus, F.); Y. Li (Li, Y.); Shengli Liu (Liu, S.); Nelson Carreira Lopes (Lopes, N.); K. V. Lotov (Lotov, K. V.); L. Maricalva Brun (Maricalva Brun, L.); Mikhail Martyanov (Martyanov, M.); Stefano Mazzoni (Mazzoni, S.); D. Medina Godoy (Medina Godoy, D.); V. A. Minakov (Minakov, V. A.); James Mitchell (Mitchell, J.); J. C. Molendijk (Molendijk, J. C.); Joshua Timothy Moody (Moody, J. T.); M. Moreira (Moreira, M.); Patrick Muggli (Muggli, P.); E. Öz (Öz, E.); C. Pasquino (Pasquino, C.); A. Pardons (Pardons, A.); F. Peña Asmus (Peña Asmus, F.); Kevin Pepitone (Pepitone, K.); A. Perera (Perera, A.); A. Petrenko (Petrenko, A.); S. Pitmann (Pitmann, S.); A. Pukhov (Pukhov, A.); S. Rey (Rey, S.); K. Rieger (Rieger, K.); Hartmut Ruhl (Ruhl, H.); Janet Susan Schmidt (Schmidt, J.); I. A. Shalimova (Shalimova, A. I.); Peter Sherwood (Sherwood, P.); L. O. Silva (Silva, L. O.); Lars Soby (Soby, L.); A. P. Sosedkin (Sosedkin, A. P.); R. Speroni (Speroni, R.); R. I. Spitsyn (Spitsyn, R. I.); P. V. Tuev (Tuev, P. V.); Michael Turner (Turner, M.); Francesco Maria Velotti (Velotti, F.); L. Verra (Verra, L.); V. A. Verzilov (Verzilov, V. A.); José António Fonseca Vieira da Silva (Vieira, J.); Carsten P. Welsch (Welsch, C. P.); B. Williamson (Williamson, B.); M. Wing (Wing, M.); B. Woolley (Woolley, B.); G. Xia (Xia, G.); et al.
Título Revista
Nature
Ano (publicação definitiva)
2018
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®

N.º de citações: 158

(Última verificação: 2024-04-25 09:00)

Ver o registo na Web of Science®


: 0.5
Scopus

N.º de citações: 179

(Última verificação: 2024-04-20 02:54)

Ver o registo na Scopus


: 1.7
Google Scholar

N.º de citações: 364

(Última verificação: 2024-04-26 12:03)

Ver o registo no Google Scholar

Abstract/Resumo
High-energy particle accelerators have been crucial in providing a deeper understanding of fundamental particles and the forces that govern their interactions. To increase the energy of the particles or to reduce the size of the accelerator, new acceleration schemes need to be developed. Plasma wakefield acceleration(1-5), in which the electrons in a plasma are excited, leading to strong electric fields (so called 'wakefields'), is one such promising acceleration technique. Experiments have shown that an intense laser pulse(6-9) or electron bunch(10,11) traversing a plasma can drive electric fields of tens of gigavolts per metre and above-well beyond those achieved in conventional radio-frequency accelerators (about 0.1 gigavolt per metre). However, the low stored energy of laser pulses and electron bunches means that multiple acceleration stages are needed to reach very high particle energies(5,12). The use of proton bunches is compelling because they have the potential to drive wakefields and to accelerate electrons to high energy in a single acceleration stage(13). Long, thin proton bunches can be used because they undergo a process called self-modulation(14-16), a particle-plasma interaction that splits the bunch longitudinally into a series of high-density microbunches, which then act resonantly to create large wakefields. The Advanced Wakefield (AWAKE) experiment at CERN17-19 uses high-intensity proton bunches-in which each proton has an energy of 400 gigaelectronvolts, resulting in a total bunch energy of 19 kilojoules-to drive a wakefield in a ten-metrelong plasma. Electron bunches are then injected into this wakefield. Here we present measurements of electrons accelerated up to two gigaelectronvolts at the AWAKE experiment, in a demonstration of proton-driven plasma wakefield acceleration. Measurements were conducted under various plasma conditions and the acceleration was found to be consistent and reliable. The potential for this scheme to produce very high-energy electron bunches in a single accelerating stage(20) means that our results are an important step towards the development of future high-energy particle accelerators(21-22).
Agradecimentos/Acknowledgements
--
Palavras-chave
  • Outras Ciências Naturais - Ciências Naturais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
NRF-2016R1A5A1013277 National Research Foundation of Korea
NRF-2015R1D1A1A01061074 National Research Foundation of Korea
PU 213-6/1 Deutsche Forschungsgemeinschaft
14-50-00080 Russian Science Foundation
SFRH/IF/01635/2015 Fundação para a Ciência e a Tecnologia
RPG-2017-143 Leverhulme Trust Research Project
CERN/FIS-TEC/0032/2017 Fundação para a Ciência e a Tecnologia
PTDC-FIS-PLA-2940-2014 Fundação para a Ciência e a Tecnologia
UID/FIS/50010/2013 Fundação para a Ciência e a Tecnologia