Artigo em revista científica Q1
Short‑term load forecasting using time series clustering
Ana Alexandra A. F. Martins (Martins, A. A. A. F.); João Lagarto (Lagarto, J.); Hiren Canacsinh (Canacsinh, H.); Francisco Reis (Reis, F.); Margarida G. M. S. Cardoso (Cardoso, M. G. M. S.);
Título Revista
Optimization and Engineering
Ano (publicação definitiva)
2022
Língua
Inglês
País
Países Baixos (Holanda)
Mais Informação
Web of Science®

N.º de citações: 3

(Última verificação: 2024-12-22 06:25)

Ver o registo na Web of Science®


: 0.7
Scopus

N.º de citações: 3

(Última verificação: 2024-12-15 13:25)

Ver o registo na Scopus


: 0.6
Google Scholar

Esta publicação não está indexada no Google Scholar

Abstract/Resumo
Short-term load forecasting plays a major role in energy planning. Its accuracy has a direct impact on the way power systems are operated and managed. We propose a new Clustering-based Similar Pattern Forecasting algorithm (CSPF) for short-term load forecasting. It resorts to a K-Medoids clustering algorithm to identify load patterns and to the COMB distance to capture differences between time series. Clusters’ labels are then used to identify similar sequences of days. Temperature information is also considered in the day-ahead load forecasting, resorting to the K-Nearest Neighbor approach. CSPF algorithm is intended to provide the aggregate forecast of Portugal’s national load, for the next day, with a 15-min discretization, based on data from the Portuguese Transport Network Operator (TSO). CSPF forecasting performance, as evaluated by RMSE, MAE and MAPE metrics, outperforms three alternative/baseline methods, suggesting that the proposed approach is promising in similar applications.
Agradecimentos/Acknowledgements
This work was supported by Instituto Politécnico Lisboa (IPL) with reference IPL/2020/ELForcast_ISEL and Fundação para a Ciência e a Tecnologia, grants UIDB/00315/2020 and UIDB/50021/2020. We thank Tiago G. S. Chambel Cardoso for the paper Figures design
Palavras-chave
Clustering time series,Distance measures,Load pattern,Sequence pattern,Similar pattern method,Short-term load forecasting
  • Outras Engenharias e Tecnologias - Engenharia e Tecnologia
Registos de financiamentos
Referência de financiamento Entidade Financiadora
IPL/2020/ELForcast_ISEL Instituto Politécnico de Lisboa
UIDB/50021/2020 Fundação para a Ciência e a Tecnologia
UIDB/00315/2020 Fundação para a Ciência e a Tecnologia