Artigo em revista científica Q1
Forecasting bitcoin volatility: Exploring the potential of deep learning
Tiago E. Pratas (Pratas, T. E.); Filipe R. Ramos (Ramos, F. R.); Lihki J. Rubio (Rubio, L. J.);
Título Revista
Eurasian Economic Review
Ano (publicação definitiva)
2023
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

N.º de citações: 4

(Última verificação: 2024-12-21 16:49)

Ver o registo na Web of Science®


: 1.6
Scopus

N.º de citações: 5

(Última verificação: 2024-12-14 23:25)

Ver o registo na Scopus


: 1.5
Google Scholar

N.º de citações: 7

(Última verificação: 2024-12-16 21:16)

Ver o registo no Google Scholar

Abstract/Resumo
This study aims to evaluate forecasting properties of classic methodologies (ARCH and GARCH models) in comparison with deep learning methodologies (MLP, RNN, and LSTM architectures) for predicting Bitcoin's volatility. As a new asset class with unique characteristics, Bitcoin's high volatility and structural breaks make forecasting challenging. Based on 2753 observations from 08-09-2014 to 01-05-2022, this study focuses on Bitcoin logarithmic returns. Results show that deep learning methodologies have advantages in terms of forecast quality, although significant computational costs are required. Although both MLP and RNN models produce smoother forecasts with less fluctuation, they fail to capture large spikes. The LSTM architecture, on the other hand, reacts strongly to such movements and tries to adjust its forecast accordingly. To compare forecasting accuracy at different horizons MAPE, MAE metrics are used. Diebold-Mariano tests were conducted to compare the forecast, confirming the superiority of deep learning methodologies. Overall, this study suggests that deep learning methodologies could provide a promising tool for forecasting Bitcoin returns (and therefore volatility), especially for short-term horizons.
Agradecimentos/Acknowledgements
This work is partially financed by national funds through FCT – Fundação para a Ciência e a Tecnologia under the project UIDB/00006/2020. The paper has also benefited from discussions at the at the 42nd EBES Conference, in Lisbon.
Palavras-chave
Cryptocurrencies,Bitcoin,ARCH/GARCH models,Deep learning,Forecasting,Prediction error
  • Matemáticas - Ciências Naturais
  • Ciências da Computação e da Informação - Ciências Naturais
  • Economia e Gestão - Ciências Sociais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UIDB/00006/2020 Fundação para a Ciência e a Tecnologia