Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Curto, J. D. & Pinto, J. C. (2007). New multicollinearity indicators in linear regression models. International Statistical Review. 75 (1), 114-121
J. J. Curto and J. C. Pinto, "New multicollinearity indicators in linear regression models", in Int. Statistical Review, vol. 75, no. 1, pp. 114-121, 2007
@article{curto2007_1732199299133, author = "Curto, J. D. and Pinto, J. C.", title = "New multicollinearity indicators in linear regression models", journal = "International Statistical Review", year = "2007", volume = "75", number = "1", doi = "10.1111/j.1751-5823.2007.00007.x", pages = "114-121", url = "http://onlinelibrary.wiley.com/doi/10.1111/j.1751-5823.2007.00007.x/abstract" }
TY - JOUR TI - New multicollinearity indicators in linear regression models T2 - International Statistical Review VL - 75 IS - 1 AU - Curto, J. D. AU - Pinto, J. C. PY - 2007 SP - 114-121 SN - 0306-7734 DO - 10.1111/j.1751-5823.2007.00007.x UR - http://onlinelibrary.wiley.com/doi/10.1111/j.1751-5823.2007.00007.x/abstract AB - Correlation is an important statistical issue for the Ordinary Least Squares estimates and for data-reduction techniques, such as the Factor and the Principal Components analyses. In this paper we propose new indicators for the multicollinearity problem in the multiple linear regression model. ER -