Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Laureano, R., Mendes, D. A. & Ferreira, M. A. M. (2007). Efficient synchronization with chaotic quadratic maps. In Kovacova, M. (Ed.), 6th International Conference APLIMAT 2007. (pp. 215-224). Bratislava, Slovakia: Slovak University of Technology in Bratislava.
M. D. Laureano et al., "Efficient synchronization with chaotic quadratic maps", in 6th Int. Conf. APLIMAT 2007, Kovacova, M., Ed., Bratislava, Slovakia, Slovak University of Technology in Bratislava, 2007, pp. 215-224
@inproceedings{laureano2007_1734531889255, author = "Laureano, R. and Mendes, D. A. and Ferreira, M. A. M.", title = "Efficient synchronization with chaotic quadratic maps", booktitle = "6th International Conference APLIMAT 2007", year = "2007", editor = "Kovacova, M.", volume = "", number = "", series = "", pages = "215-224", publisher = "Slovak University of Technology in Bratislava", address = "Bratislava, Slovakia", organization = "" }
TY - CPAPER TI - Efficient synchronization with chaotic quadratic maps T2 - 6th International Conference APLIMAT 2007 AU - Laureano, R. AU - Mendes, D. A. AU - Ferreira, M. A. M. PY - 2007 SP - 215-224 CY - Bratislava, Slovakia AB - We present a systematic way to design unidirectional and bidirectional coupling schemes for synchronizing arbitrary pairs of (identical or different) discrete dynamical systems. If the coupled chaotic systems are very similar or identical, using the singular value decomposition, it is possible to suppress the exponential divergence of the dynamics of the synchronization error, and exploit the existing contraction properties of the given systems. When non-identical systems are coupled, in order to achieve synchronization it is necessary to employ some other techniques from linear algebra, stability theory and control. We use two methods to study the stability of synchronous state: the linear stability and the Lyapunov functional analysis. In order to illustrate these methods, we use a system of two coupled chaotic quadratic maps. The map obtained by coupling exhibits a richer dynamics that the single quadratic map, but is still possible to study its behaviour. ER -