Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Miró-Roig, M. & Soares, H. (2009). Cohomological characterisation of Steiner bundles. Forum Mathematicum. 1 (5), 871-891
R. M. Miró-Roig and H. I. Soares, "Cohomological characterisation of Steiner bundles", in Forum Mathematicum, vol. 1, no. 5, pp. 871-891, 2009
@article{miró-roig2009_1731745483316, author = "Miró-Roig, M. and Soares, H.", title = "Cohomological characterisation of Steiner bundles", journal = "Forum Mathematicum", year = "2009", volume = "1", number = "5", doi = "10.1515/FORUM.2009.043", pages = "871-891", url = "https://www.degruyter.com/view/j/form.2009.21.issue-5/forum.2009.043/forum.2009.043.xml" }
TY - JOUR TI - Cohomological characterisation of Steiner bundles T2 - Forum Mathematicum VL - 1 IS - 5 AU - Miró-Roig, M. AU - Soares, H. PY - 2009 SP - 871-891 SN - 0933-7741 DO - 10.1515/FORUM.2009.043 UR - https://www.degruyter.com/view/j/form.2009.21.issue-5/forum.2009.043/forum.2009.043.xml AB - A vector bundle E on a smooth irreducible algebraic variety X is called a Steiner bundle of type (F0, F1) if it is defined by an exact sequence of the form where s, t ? 1 and (F0, F1) is a strongly exceptional pair of vector bundles on X such that is generated by global sections. Let X be a smooth irreducible projective variety of dimension n with an n-block collection , of locally free sheaves on X which generate D b(X-mod). We give a cohomological characterisation of Steiner bundles of type on X, where 0 ? a < b ? n and 1 ? i 0 ? ?a, 1 ? j0 ? ?b. ER -