Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
Miró-Roig, M. & Soares, H. (2009). Cohomological characterisation of Steiner bundles. Forum Mathematicum. 1 (5), 871-891
Exportar Referência (IEEE)
R. M. Miró-Roig and H. I. Soares,  "Cohomological characterisation of Steiner bundles", in Forum Mathematicum, vol. 1, no. 5, pp. 871-891, 2009
Exportar BibTeX
@article{miró-roig2009_1731745483316,
	author = "Miró-Roig, M. and Soares, H.",
	title = "Cohomological characterisation of Steiner bundles",
	journal = "Forum Mathematicum",
	year = "2009",
	volume = "1",
	number = "5",
	doi = "10.1515/FORUM.2009.043",
	pages = "871-891",
	url = "https://www.degruyter.com/view/j/form.2009.21.issue-5/forum.2009.043/forum.2009.043.xml"
}
Exportar RIS
TY  - JOUR
TI  - Cohomological characterisation of Steiner bundles
T2  - Forum Mathematicum
VL  - 1
IS  - 5
AU  - Miró-Roig, M.
AU  - Soares, H.
PY  - 2009
SP  - 871-891
SN  - 0933-7741
DO  - 10.1515/FORUM.2009.043
UR  - https://www.degruyter.com/view/j/form.2009.21.issue-5/forum.2009.043/forum.2009.043.xml
AB  - A vector bundle E on a smooth irreducible algebraic variety X is called a Steiner bundle of type (F0, F1) if it is defined by an exact sequence of the form where s, t ? 1 and (F0, F1) is a strongly exceptional pair of vector bundles on X such that is generated by global sections. Let X be a smooth irreducible projective variety of dimension n with an n-block collection , of locally free sheaves on X which generate D b(X-mod). We give a cohomological characterisation of Steiner bundles of type on X, where 0 ? a < b ? n and 1 ? i 0 ? ?a, 1 ? j0 ? ?b.
ER  -