Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Miró-Roig, M. & Soares, H. (2008). The stability of exceptional bundles on complete intersection 3-folds. Proceedings of the American Mathematical Society. 136 (11), 3751-3757
R. M. Miró-Roig and H. I. Soares, "The stability of exceptional bundles on complete intersection 3-folds", in Proc. of the American Mathematical Society, vol. 136, no. 11, pp. 3751-3757, 2008
@article{miró-roig2008_1731745428616, author = "Miró-Roig, M. and Soares, H.", title = "The stability of exceptional bundles on complete intersection 3-folds", journal = "Proceedings of the American Mathematical Society", year = "2008", volume = "136", number = "11", doi = "10.1090/S0002-9939-08-09258-7", pages = "3751-3757", url = "http://www.ams.org/journals/proc/2008-136-11/S0002-9939-08-09258-7/home.html" }
TY - JOUR TI - The stability of exceptional bundles on complete intersection 3-folds T2 - Proceedings of the American Mathematical Society VL - 136 IS - 11 AU - Miró-Roig, M. AU - Soares, H. PY - 2008 SP - 3751-3757 SN - 0002-9939 DO - 10.1090/S0002-9939-08-09258-7 UR - http://www.ams.org/journals/proc/2008-136-11/S0002-9939-08-09258-7/home.html AB - A very long-standing problem in Algebraic Geometry is to determine the stability of exceptional vector bundles on smooth projective varieties. In this paper we address this problem and we prove that any exceptional vector bundle on a smooth complete intersection 3-fold Y subset of P-n of type (d(1),..., d(n-3)) with d(1) + ... + d(n-3) <= n and n <= 4 is stable. ER -