Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Marques, P. M. & Soares, H. (2014). Cohomological characterisation of monads. Mathematische Nachrichten. 287 (17-18), 2057-2070
P. M. Marques and H. I. Soares, "Cohomological characterisation of monads", in Mathematische Nachrichten, vol. 287, no. 17-18, pp. 2057-2070, 2014
@article{marques2014_1766549424377,
author = "Marques, P. M. and Soares, H.",
title = "Cohomological characterisation of monads",
journal = "Mathematische Nachrichten",
year = "2014",
volume = "287",
number = "17-18",
doi = "10.1002/mana.201300208",
pages = "2057-2070",
url = "http://onlinelibrary.wiley.com/doi/10.1002/mana.201300208/abstract;jsessionid=83ECA9F37C1932A64816F6F3CC37C953.f01t03"
}
TY - JOUR TI - Cohomological characterisation of monads T2 - Mathematische Nachrichten VL - 287 IS - 17-18 AU - Marques, P. M. AU - Soares, H. PY - 2014 SP - 2057-2070 SN - 0025-584X DO - 10.1002/mana.201300208 UR - http://onlinelibrary.wiley.com/doi/10.1002/mana.201300208/abstract;jsessionid=83ECA9F37C1932A64816F6F3CC37C953.f01t03 AB - Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family. ER -
English