Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
Marques, P. M. & Soares, H. (2014). Cohomological characterisation of monads. Mathematische Nachrichten. 287 (17-18), 2057-2070
Exportar Referência (IEEE)
P. M. Marques and H. I. Soares,  "Cohomological characterisation of monads", in Mathematische Nachrichten, vol. 287, no. 17-18, pp. 2057-2070, 2014
Exportar BibTeX
@article{marques2014_1766549424377,
	author = "Marques, P. M. and Soares, H.",
	title = "Cohomological characterisation of monads",
	journal = "Mathematische Nachrichten",
	year = "2014",
	volume = "287",
	number = "17-18",
	doi = "10.1002/mana.201300208",
	pages = "2057-2070",
	url = "http://onlinelibrary.wiley.com/doi/10.1002/mana.201300208/abstract;jsessionid=83ECA9F37C1932A64816F6F3CC37C953.f01t03"
}
Exportar RIS
TY  - JOUR
TI  - Cohomological characterisation of monads
T2  - Mathematische Nachrichten
VL  - 287
IS  - 17-18
AU  - Marques, P. M.
AU  - Soares, H.
PY  - 2014
SP  - 2057-2070
SN  - 0025-584X
DO  - 10.1002/mana.201300208
UR  - http://onlinelibrary.wiley.com/doi/10.1002/mana.201300208/abstract;jsessionid=83ECA9F37C1932A64816F6F3CC37C953.f01t03
AB  - Let X be an n-dimensional smooth projective variety with an n-block collection B=(F0,...,Fn), with Fi=<, of coherent sheaves on X that generate the bounded derived category Db(X). We give a cohomological characterisation of torsion-free sheaves on X that are the cohomology of monads of the form kn. We apply the result to get a cohomological characterisation when X is the projective space, the smooth hyperquadric Pn+1 or the Fano threefold V-5. We construct a family of monads on a Segre variety and apply our main result to this family.
ER  -