Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
Baudry, J.-P., Cardoso, M. G. M. S., Celeux, G., Amorim, M. J. & Ferreira, A. S. (2015). Enhancing the selection of a model-based clustering with external categorical variables. Advances in Data Analysis and Classification. 9 (2), 177-196
Exportar Referência (IEEE)
B. J.-P. et al.,  "Enhancing the selection of a model-based clustering with external categorical variables", in Advances in Data Analysis and Classification, vol. 9, no. 2, pp. 177-196, 2015
Exportar BibTeX
@article{j.-p.2015_1732201660005,
	author = "Baudry, J.-P. and Cardoso, M. G. M. S. and Celeux, G. and Amorim, M. J. and Ferreira, A. S.",
	title = "Enhancing the selection of a model-based clustering with external categorical variables",
	journal = "Advances in Data Analysis and Classification",
	year = "2015",
	volume = "9",
	number = "2",
	doi = "10.1007/s11634-014-0177-3",
	pages = "177-196",
	url = "http://link.springer.com/article/10.1007%2Fs11634-014-0177-3"
}
Exportar RIS
TY  - JOUR
TI  - Enhancing the selection of a model-based clustering with external categorical variables
T2  - Advances in Data Analysis and Classification
VL  - 9
IS  - 2
AU  - Baudry, J.-P.
AU  - Cardoso, M. G. M. S.
AU  - Celeux, G.
AU  - Amorim, M. J.
AU  - Ferreira, A. S.
PY  - 2015
SP  - 177-196
SN  - 1862-5347
DO  - 10.1007/s11634-014-0177-3
UR  - http://link.springer.com/article/10.1007%2Fs11634-014-0177-3
AB  - In cluster analysis, it can be useful to interpret the partition built from the data in the light of external categorical variables which are not directly involved to cluster the data. An approach is proposed in the model-based clustering context to select a number of clusters which both fits the data well and takes advantage of the potential illustrative ability of the external variables. This approach makes use of the integrated joint likelihood of the data and the partitions at hand, namely the model-based partition and the partitions associated to the external variables. It is noteworthy that each mixture model is fitted by the maximum likelihood methodology to the data, excluding the external variables which are used to select a relevant mixture model only. Numerical experiments illustrate the promising behaviour of the derived criterion.
ER  -