Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Mendes, S. & Plymen, R. (2007). Base change and K-theory for GL(n). Journal of Noncommutative Geometry. 1 (3), 311-331
S. M. Mendes and R. Plymen, "Base change and K-theory for GL(n)", in Journal of Noncommutative Geometry, vol. 1, no. 3, pp. 311-331, 2007
@article{mendes2007_1765822931678,
author = "Mendes, S. and Plymen, R.",
title = "Base change and K-theory for GL(n)",
journal = "Journal of Noncommutative Geometry",
year = "2007",
volume = "1",
number = "3",
doi = "10.4171/JNCG/9",
pages = "311-331",
url = "http://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=1&iss=3&rank=2"
}
TY - JOUR TI - Base change and K-theory for GL(n) T2 - Journal of Noncommutative Geometry VL - 1 IS - 3 AU - Mendes, S. AU - Plymen, R. PY - 2007 SP - 311-331 SN - 1661-6952 DO - 10.4171/JNCG/9 UR - http://www.ems-ph.org/journals/show_abstract.php?issn=1661-6952&vol=1&iss=3&rank=2 AB - Let F be a nonarchimedean local field and let G = GL(n) = GL(n,F). Let E/F be a finite Galois extension. We investigate base change E/F at two levels: at the level of algebraic varieties, and at the level ofK-theory. We put special emphasis on the representations with Iwahori fixed vectors, and the tempered spectrum of GL(1) and GL(2). In this context, the prominent arithmetic invariant is the residue degree f(E/F). ER -
English