Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Proença, P., Gaspar, F. & Dias, J. (2013). Good appearance and shape descriptors for object category recognition. In George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Baoxin Li, Fatih Porikli, Victor Zordan, James Klosowski, Sabine Coquillart, Xun Luo, Min Chen, David Gotz (Ed.), Advances in visual computing: 9th International Symposium, ISVC 2013, Proceedings. (pp. 385-394). Crete: Springer.
P. F. Proenca et al., "Good appearance and shape descriptors for object category recognition", in Advances in visual computing: 9th Int. Symp., ISVC 2013, Proc., George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Baoxin Li, Fatih Porikli, Victor Zordan, James Klosowski, Sabine Coquillart, Xun Luo, Min Chen, David Gotz, Ed., Crete, Springer, 2013, vol. 8033, pp. 385-394
@inproceedings{proenca2013_1734976888659, author = "Proença, P. and Gaspar, F. and Dias, J.", title = "Good appearance and shape descriptors for object category recognition", booktitle = "Advances in visual computing: 9th International Symposium, ISVC 2013, Proceedings", year = "2013", editor = "George Bebis, Richard Boyle, Bahram Parvin, Darko Koracin, Baoxin Li, Fatih Porikli, Victor Zordan, James Klosowski, Sabine Coquillart, Xun Luo, Min Chen, David Gotz", volume = "8033", number = "", series = "Lecture Notes in Artificial Intelligence", pages = "385-394", publisher = "Springer", address = "Crete", organization = "", url = "http://link.springer.com/chapter/10.1007%2F978-3-642-41914-0_38" }
TY - CPAPER TI - Good appearance and shape descriptors for object category recognition T2 - Advances in visual computing: 9th International Symposium, ISVC 2013, Proceedings VL - 8033 AU - Proença, P. AU - Gaspar, F. AU - Dias, J. PY - 2013 SP - 385-394 SN - 0302-9743 CY - Crete UR - http://link.springer.com/chapter/10.1007%2F978-3-642-41914-0_38 AB - In the problem of object category recognition, we have studied different families of descriptors exploiting RGB and 3D information. Furthermore, we have proven practically that 3D shape-based descriptors are more suitable for this type of recognition due to low shape intra-class variance, as opposed to image texture-based. In addition, we have also shown how an efficient Naive Bayes Nearest Neighbor (NBNN) classifier can scale to a large hierarchical RGB-D Object Dataset [2] and achieve, with a single descriptor type, an accuracy close to state-of-art learning based approaches using combined descriptors. ER -