Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
João Sande Lemos, Francisco Rosário, Monteiro, F. A., João Xaviel & António J. Rodrigues (2015). Massive MIMO full-duplex relaying with optimal power allocation for independent multipairs. In IEEE (Ed.), 16th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC). Stockholm: IEEE.
Exportar Referência (IEEE)
J. F. Lemos et al.,  "Massive MIMO full-duplex relaying with optimal power allocation for independent multipairs", in 16th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC), IEEE, Ed., Stockholm, IEEE, 2015
Exportar BibTeX
@inproceedings{lemos2015_1714642153739,
	author = "João Sande Lemos and Francisco Rosário and Monteiro, F. A. and João Xaviel and António J. Rodrigues",
	title = "Massive MIMO full-duplex relaying with optimal power allocation for independent multipairs",
	booktitle = "16th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC)",
	year = "2015",
	editor = "IEEE",
	volume = "",
	number = "",
	series = "",
	doi = "10.1109/SPAWC.2015.7227049",
	publisher = "IEEE",
	address = "Stockholm",
	organization = "IEEE Signal Processing Society",
	url = "http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7227049"
}
Exportar RIS
TY  - CPAPER
TI  - Massive MIMO full-duplex relaying with optimal power allocation for independent multipairs
T2  - 16th IEEE Workshop on Signal Processing Advances in Wireless Communications (SPAWC)
AU  - João Sande Lemos
AU  - Francisco Rosário
AU  - Monteiro, F. A.
AU  - João Xaviel
AU  - António J. Rodrigues
PY  - 2015
SN  - 1948-3244
DO  - 10.1109/SPAWC.2015.7227049
CY  - Stockholm
UR  - http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=7227049
AB  - With the help of an in-band full-duplex relay station, it is possible to simultaneously transmit and receive signals from multiple users. The performance of such system can be greatly increased when the relay station is equipped with a large number of antennas on both transmitter and receiver sides. In this paper, we exploit the use of massive arrays to effectively suppress the loopback interference (LI) of a decode-and-forward relay (DF) and evaluate the performance of the end-to-end (e2e) transmission. This paper assumes imperfect channel state information is available at the relay and designs a minimum mean-square error (MMSE) filter to mitigate the interference. Subsequently, we adopt zero-forcing (ZF) filters for both detection and beamforming. The performance of such system is evaluated in terms of bit error rate (BER) at both relay and destinations, and an optimal choice for the transmission power at the relay is shown. We then propose a complexity efficient optimal power allocation (OPA) algorithm that, using the channel statistics, computes the minimum power that satisfies the rate constraints of each pair. The results obtained via simulation show that when both MMSE filtering and OPA method are used, better values for the energy efficiency are attained.
ER  -