Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Incensi, F. & Soares, H. (2006). On some positive embedding of P^d. Le Matematiche. 61 (2), 371-383
F. Incensi and H. I. Soares, "On some positive embedding of P^d", in Le Matematiche, vol. 61, no. 2, pp. 371-383, 2006
@article{incensi2006_1765823497690,
author = "Incensi, F. and Soares, H.",
title = "On some positive embedding of P^d",
journal = "Le Matematiche",
year = "2006",
volume = "61",
number = "2",
pages = "371-383",
url = "https://www.dmi.unict.it/ojs/index.php/lematematiche/index"
}
TY - JOUR
TI - On some positive embedding of P^d
T2 - Le Matematiche
VL - 61
IS - 2
AU - Incensi, F.
AU - Soares, H.
PY - 2006
SP - 371-383
SN - 0373-3505
UR - https://www.dmi.unict.it/ojs/index.php/lematematiche/index
AB - We prove that any two embeddings P^d ? Y ? X_1 , P^d ? Y ? X_2 , d ? 3, in two n-folds projective varieties X_1 , X_2 with normal bundle N_{Y |X_1} ? X_{Y |X_2} ? (n ? d)O_{P^d} (1) are formally equivalent.
Moreover, we see that Y is G2 in both X_1 and X_2. As an immediate consequence of this result and if furthermore Y is G3 in both X_1 and X_2 then we deduce that the two embeddings are Zariski equivalent.
ER -
English