Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Incensi, F. & Soares, H. (2006). On some positive embedding of P^d. Le Matematiche. 61 (2), 371-383
F. Incensi and H. I. Soares, "On some positive embedding of P^d", in Le Matematiche, vol. 61, no. 2, pp. 371-383, 2006
@article{incensi2006_1731870892247, author = "Incensi, F. and Soares, H.", title = "On some positive embedding of P^d", journal = "Le Matematiche", year = "2006", volume = "61", number = "2", pages = "371-383", url = "https://www.dmi.unict.it/ojs/index.php/lematematiche/index" }
TY - JOUR TI - On some positive embedding of P^d T2 - Le Matematiche VL - 61 IS - 2 AU - Incensi, F. AU - Soares, H. PY - 2006 SP - 371-383 SN - 0373-3505 UR - https://www.dmi.unict.it/ojs/index.php/lematematiche/index AB - We prove that any two embeddings P^d ? Y ? X_1 , P^d ? Y ? X_2 , d ? 3, in two n-folds projective varieties X_1 , X_2 with normal bundle N_{Y |X_1} ? X_{Y |X_2} ? (n ? d)O_{P^d} (1) are formally equivalent. Moreover, we see that Y is G2 in both X_1 and X_2. As an immediate consequence of this result and if furthermore Y is G3 in both X_1 and X_2 then we deduce that the two embeddings are Zariski equivalent. ER -