Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
Incensi, F. & Soares, H. (2006). On some positive embedding of P^d. Le Matematiche. 61 (2), 371-383
Exportar Referência (IEEE)
F. Incensi and H. I. Soares,  "On some positive embedding of P^d", in Le Matematiche, vol. 61, no. 2, pp. 371-383, 2006
Exportar BibTeX
@article{incensi2006_1731870892247,
	author = "Incensi, F. and Soares, H.",
	title = "On some positive embedding of P^d",
	journal = "Le Matematiche",
	year = "2006",
	volume = "61",
	number = "2",
	pages = "371-383",
	url = "https://www.dmi.unict.it/ojs/index.php/lematematiche/index"
}
Exportar RIS
TY  - JOUR
TI  - On some positive embedding of P^d
T2  - Le Matematiche
VL  - 61
IS  - 2
AU  - Incensi, F.
AU  - Soares, H.
PY  - 2006
SP  - 371-383
SN  - 0373-3505
UR  - https://www.dmi.unict.it/ojs/index.php/lematematiche/index
AB  - We prove that any two embeddings P^d ? Y ? X_1 , P^d ? Y ? X_2 ,  d ? 3, in two n-folds projective varieties X_1 , X_2 with normal bundle N_{Y |X_1} ? X_{Y |X_2} ? (n ? d)O_{P^d} (1) are formally equivalent.
Moreover, we see that Y is G2 in both X_1 and X_2. As an immediate consequence of this result and if furthermore Y is G3 in both X_1 and X_2 then we deduce that the two embeddings are Zariski equivalent.
ER  -