Export Publication

The publication can be exported in the following formats: APA (American Psychological Association) reference format, IEEE (Institute of Electrical and Electronics Engineers) reference format, BibTeX and RIS.

Export Reference (APA)
Teixeira, J. P., Matos, S. A., Costa, J. R., Nachabe, N., Luxey, C., Titz, D....Gianesello, F. (2017). Transmit array as a viable 3D printing option for backhaul applications at V-band. In 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting. (pp. 2641-2642). San Diego: IEEE.
Export Reference (IEEE)
J. P. Teixeira et al.,  "Transmit array as a viable 3D printing option for backhaul applications at V-band", in 2017 IEEE Int. Symp. on Antennas and Propagation & USNC/URSI Nat. Radio Science Meeting, San Diego, IEEE, 2017, pp. 2641-2642
Export BibTeX
@inproceedings{teixeira2017_1766198844007,
	author = "Teixeira, J. P. and Matos, S. A. and Costa, J. R. and Nachabe, N. and Luxey, C. and Titz, D. and Fernandes, C. A. and Gianesello, F.",
	title = "Transmit array as a viable 3D printing option for backhaul applications at V-band",
	booktitle = "2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting",
	year = "2017",
	editor = "",
	volume = "",
	number = "",
	series = "",
	doi = "10.1109/APUSNCURSINRSM.2017.8073363",
	pages = "2641-2642",
	publisher = "IEEE",
	address = "San Diego",
	organization = "",
	url = "https://ieeexplore.ieee.org/document/8073363/"
}
Export RIS
TY  - CPAPER
TI  - Transmit array as a viable 3D printing option for backhaul applications at V-band
T2  - 2017 IEEE International Symposium on Antennas and Propagation & USNC/URSI National Radio Science Meeting
AU  - Teixeira, J. P.
AU  - Matos, S. A.
AU  - Costa, J. R.
AU  - Nachabe, N.
AU  - Luxey, C.
AU  - Titz, D.
AU  - Fernandes, C. A.
AU  - Gianesello, F.
PY  - 2017
SP  - 2641-2642
DO  - 10.1109/APUSNCURSINRSM.2017.8073363
CY  - San Diego
UR  - https://ieeexplore.ieee.org/document/8073363/
AB  - Two designs of high gain dielectric lens for a Vband backhaul antenna, compatible with 3D printing, are compared. The available printing materials still have significant losses, which limit the performance of traditional focusing dielectric lenses, as the dome elliptical lens. Herein, we show that an all-dielectric transmit array can present several mechanical and electrical advantages, especially when high gains are required. We demonstrate that even with a compact transmit array (f/d = 067 it is still possible to comply with the usual bandwidth (57-66 GHz) and gain (>30 dBi) requirements for backhaul applications. 
ER  -