Ciência-IUL    Publicações    Descrição Detalhada da Publicação    Exportar

Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
Silva, A. T., Moro, S., Rita, P. & Cortez, P. (2018). Unveiling the features of successful eBay smartphone sellers. Journal of Retailing and Consumer Services . 43, 311-324
Exportar Referência (IEEE)
A. T. Silva et al.,  "Unveiling the features of successful eBay smartphone sellers", in Journal of Retailing and Consumer Services , vol. 43, pp. 311-324, 2018
Exportar BibTeX
@article{silva2018_1632477439265,
	author = "Silva, A. T. and Moro, S. and Rita, P. and Cortez, P.",
	title = "Unveiling the features of successful eBay smartphone sellers",
	journal = "Journal of Retailing and Consumer Services ",
	year = "2018",
	volume = "43",
	number = "",
	doi = "10.1016/j.jretconser.2018.05.001",
	pages = "311-324",
	url = "https://www.sciencedirect.com/science/article/pii/S0969698918302029?via%3Dihub"
}
Exportar RIS
TY  - JOUR
TI  - Unveiling the features of successful eBay smartphone sellers
T2  - Journal of Retailing and Consumer Services 
VL  - 43
AU  - Silva, A. T.
AU  - Moro, S.
AU  - Rita, P.
AU  - Cortez, P.
PY  - 2018
SP  - 311-324
SN  - 0969-6989
DO  - 10.1016/j.jretconser.2018.05.001
UR  - https://www.sciencedirect.com/science/article/pii/S0969698918302029?via%3Dihub
AB  - The present study adopts a data mining approach based on support vector machines (SVM) for modeling the number of sales of smartphone devices by eBay sellers. The data-based sensitivity analysis was adopted for extracting meaningful knowledge translated into the relevance of each input feature for the model. Such approach allowed unveiling that the number of items the seller also has on auctions, the price and the variety of products the seller offers are the three features that influence most the number of sales, in a total of almost 25%, surpassing the relevance of the features related to customers’ feedback.
ER  -