Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Gonçalves, F., Pereira, R., Ferreira, J., Vasconcelos, J. B., Melo, F. & Velez, I. (2018). Emergency waiting times data analysis. IAENG International Journal of Computer Science. 45 (3), 494-499
F. Gonçalves et al., "Emergency waiting times data analysis", in IAENG Int. Journal of Computer Science, vol. 45, no. 3, pp. 494-499, 2018
@article{gonçalves2018_1732722669000, author = "Gonçalves, F. and Pereira, R. and Ferreira, J. and Vasconcelos, J. B. and Melo, F. and Velez, I.", title = "Emergency waiting times data analysis", journal = "IAENG International Journal of Computer Science", year = "2018", volume = "45", number = "3", pages = "494-499", url = "http://www.iaeng.org/IJCS/" }
TY - JOUR TI - Emergency waiting times data analysis T2 - IAENG International Journal of Computer Science VL - 45 IS - 3 AU - Gonçalves, F. AU - Pereira, R. AU - Ferreira, J. AU - Vasconcelos, J. B. AU - Melo, F. AU - Velez, I. PY - 2018 SP - 494-499 SN - 1819-9224 UR - http://www.iaeng.org/IJCS/ AB - The Emergency Departments (ED) are a complex and important area of a hospital. With limited resources, it is mandatory to focus on efficiency. When hospitals are unable to deal with high demand, problems may rise leading to longer waiting times and more dissatisfaction. In this research, the authors extracted knowledge from a hospital ED, through data analysis and data mining, applying Random Forest and Naïve Bayes to study the ED patient waiting time and diseases. ER -