Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Mendes, S. & Bettencourt, G. H. (2018). On the Fréchet functional equation over nonarchimedean spaces. Encontro Nacional Sociedade Portuguesa de Matemática.
S. M. Mendes and G. H. Bettencourt, "On the Fréchet functional equation over nonarchimedean spaces", in Encontro Nacional Sociedade Portuguesa de Matemática, Bragança, 2018
@misc{mendes2018_1768809797110,
author = "Mendes, S. and Bettencourt, G. H.",
title = "On the Fréchet functional equation over nonarchimedean spaces",
year = "2018",
howpublished = "Digital",
url = "http://www.enspm2018.ipb.pt/PT_index.html"
}
TY - CPAPER TI - On the Fréchet functional equation over nonarchimedean spaces T2 - Encontro Nacional Sociedade Portuguesa de Matemática AU - Mendes, S. AU - Bettencourt, G. H. PY - 2018 CY - Bragança UR - http://www.enspm2018.ipb.pt/PT_index.html AB - The first norm characterization of inner product spaces was given by Fréchet in 1935. In 1936, Jordan and von Neumann proved that a normed space X is an inner product space if and only if, the parallelogram law holds in X. Since then, many other characterizations have been proved. Let G be an abelian group, and let X be a nonarchimedean space. We study Hyers-Ulam stability for the Fréchet functional equation f(x+y+z)+f(x)+f(y)+f(z)=f(x+y)+f(y+z)+f(z+x) where f is a map f: G → X. This is a joint work with Gastão Bettencourt. ER -
English