Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
Souto, N., Silva, J., Pavia, J. P. & Ribeiro, M. (2019). An alternating direction algorithm for hybrid precoding and combining in millimeter wave MIMO systems. Physical Communication. 34, 165-173
Exportar Referência (IEEE)
N. M. Souto et al.,  "An alternating direction algorithm for hybrid precoding and combining in millimeter wave MIMO systems", in Physical Communication, vol. 34, pp. 165-173, 2019
Exportar BibTeX
@article{souto2019_1714766153282,
	author = "Souto, N. and Silva, J. and Pavia, J. P. and Ribeiro, M.",
	title = "An alternating direction algorithm for hybrid precoding and combining in millimeter wave MIMO systems",
	journal = "Physical Communication",
	year = "2019",
	volume = "34",
	number = "",
	doi = "10.1016/j.phycom.2019.03.012",
	pages = "165-173",
	url = "https://doi.org/10.1016/j.phycom.2019.03.012"
}
Exportar RIS
TY  - JOUR
TI  - An alternating direction algorithm for hybrid precoding and combining in millimeter wave MIMO systems
T2  - Physical Communication
VL  - 34
AU  - Souto, N.
AU  - Silva, J.
AU  - Pavia, J. P.
AU  - Ribeiro, M.
PY  - 2019
SP  - 165-173
SN  - 1874-4907
DO  - 10.1016/j.phycom.2019.03.012
UR  - https://doi.org/10.1016/j.phycom.2019.03.012
AB  - Millimeter-wave (mmWave) technology is one of the most promising candidates for future wireless communication systems as it can offer large underutilized bandwidths and eases the implementation of large antenna arrays which are required to help overcome the severe signal attenuation that occurs at these frequencies. To reduce the high cost and power consumption of a fully digital mmWave precoder and combiner, hybrid analog/digital designs based on analog phase shifters are often adopted. In this work we derive an iterative algorithm for the hybrid precoding and combining design for spatial multiplexing in mmWave massive multiple-input multiple-output (MIMO) systems. To cope with the difficulty of handling the hardware constraint imposed by the analog phase shifters we use the alternating direction method of the multipliers (ADMM) to split the hybrid design problem into a sequence of smaller subproblems. This results in an iterative algorithm where the design of the analog precoder/combiner consists of a closed form solution followed by a simple projection over the set of matrices with equal magnitude elements. It is initially developed for the fully-connected structure and then extended to the partially-connected architecture which allows simpler hardware implementation. Furthermore, to cope with the more likely wideband scenarios where the channel is frequency selective, we also extend the algorithm to an orthogonal frequency division multiplexing (OFDM) based mmWave system. Simulation results in different scenarios show that the proposed design algorithms are capable of achieving performances close to the optimal fully digital solution and can work with a broad range of configuration of antennas, RF chains and data streams.
ER  -