Ciência-IUL    Publicações    Descrição Detalhada da Publicação    Exportar

Exportar Publicação

A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.

Exportar Referência (APA)
Ferreira, M. A. M. (2020). A look on mathematical fundamentals for minimax theorem and Nash equilibrium existence. In Dagmar Szarková, Daniela Richtáriková, Monika Prásillová (Ed.), 19th Conference on Applied Mathematics APLIMAT 2020 Proceedings. (pp. 418-424). Bratislava: SPECTRUM STU.
Exportar Referência (IEEE)
M. A. Ferreira,  "A look on mathematical fundamentals for minimax theorem and Nash equilibrium existence", in 19th Conf. on Applied Mathematics APLIMAT 2020 Proc., Dagmar Szarková, Daniela Richtáriková, Monika Prásillová, Ed., Bratislava, SPECTRUM STU, 2020, vol. 1, pp. 418-424
Exportar BibTeX
@inproceedings{ferreira2020_1618287351168,
	author = "Ferreira, M. A. M.",
	title = "A look on mathematical fundamentals for minimax theorem and Nash equilibrium existence",
	booktitle = "19th Conference on Applied Mathematics APLIMAT 2020 Proceedings",
	year = "2020",
	editor = "Dagmar Szarková, Daniela Richtáriková, Monika Prásillová",
	volume = "1",
	number = "",
	series = "",
	pages = "418-424",
	publisher = "SPECTRUM STU",
	address = "Bratislava",
	organization = "Slovak University of Technology in Bratislava-Faculty of Mechanical Engineering ",
	url = "http://evlm.stuba.sk/APLIMAT/indexe.htm"
}
Exportar RIS
TY  - CPAPER
TI  - A look on mathematical fundamentals for minimax theorem and Nash equilibrium existence
T2  - 19th Conference on Applied Mathematics APLIMAT 2020 Proceedings
VL  - 1
AU  - Ferreira, M. A. M.
PY  - 2020
SP  - 418-424
CY  - Bratislava
UR  - http://evlm.stuba.sk/APLIMAT/indexe.htm
AB  - We present two results of Game Theory, very important in Economics: minimax theorem and Nash equilibrium existence, together with their mathematical fundamentals. For minimax theorem, the mathematical structure considered is real Hilbert spaces. Moreover, the convex sets strict separation plays here an important role. For Nash equilibrium existence, Kakutani's theorem is the key result to consider. Then follows a presentation of some propositions that identify matches between those outcomes.
ER  -