Exportar Publicação
A publicação pode ser exportada nos seguintes formatos: referência da APA (American Psychological Association), referência do IEEE (Institute of Electrical and Electronics Engineers), BibTeX e RIS.
Dias, J., Gamito, M. N. & Rebordão, J. M. (1998). Modelling Cloth Buckling and Drape. In Proc of Eurographics 1998 - Short Papers. Lisboa: The Eurographics Association.
J. M. Dias et al., "Modelling Cloth Buckling and Drape", in Proc of Eurographics 1998 - Short Papers, Lisboa, The Eurographics Association, 1998
@inproceedings{dias1998_1734973943494, author = "Dias, J. and Gamito, M. N. and Rebordão, J. M.", title = "Modelling Cloth Buckling and Drape", booktitle = "Proc of Eurographics 1998 - Short Papers", year = "1998", editor = "", volume = "", number = "", series = "", doi = "10.2312/egs.19981014", publisher = "The Eurographics Association", address = "Lisboa", organization = "Grupo Português de Computação Gráfica", url = "https://diglib.eg.org/handle/10.2312/egs19981014" }
TY - CPAPER TI - Modelling Cloth Buckling and Drape T2 - Proc of Eurographics 1998 - Short Papers AU - Dias, J. AU - Gamito, M. N. AU - Rebordão, J. M. PY - 1998 SN - 1017-4656 DO - 10.2312/egs.19981014 CY - Lisboa UR - https://diglib.eg.org/handle/10.2312/egs19981014 AB - We present a new computational model for plain woven fabrics. The model is able to represent known elastic behaviour in deformation, such as planar extension and shearing and out-of-plane bending, drape and buckling. The buckling behaviour is present both in shear and compression. Visual results of these deformation conditions are shown. The cloth is assumed to be an orthotropic linear elastic continuum, discretized by a mesh of triangles. For the planar deformation, we assume the hypothesis of the plate under plane stress, of the classical theory of Elasticity and each triangle corresponds to a Strain-Rosette. For the out-of-plane deformation, we allow linear elasticity and non-linear displacement in bending, as expressed by the Bernoulli-Euler equation. Dynamic equilibrium is formulated using Newton’s 2nd law. We model non-linear elastic material behaviour, by piecewise linear approximation of measured data. ER -