Ciência_Iscte
Publicações
Descrição Detalhada da Publicação
A deep learning toolkit for water stress detection in viticulture
2024 International Symposium on Sensing and Instrumentation in 5G and IoT Era (ISSI)
Ano (publicação definitiva)
2024
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Google Scholar
Esta publicação não está indexada no Overton
Abstract/Resumo
The paper addresses the critical issue of water stress in viticulture, which is vital for improving grape yield and quality. The use of advanced deep learning methods and UAVs for data collection significantly enhances the accuracy and efficiency of water stress monitoring. The development of a Django-based web platform for interactive prediction and reporting to users is a substantial contribution to the practical applicability of the research. The proposed algorithm, based on the U-Net neural network, segments images to detect water stress using aerial RGB and thermal imagery. The model was successfully trained on the Agriculture-Vision dataset, showing promising results in segmenting agricultural patterns. Due to unfavourable weather conditions, data collection was limited, which may affect the completeness and reliability of the results. The use of transfer learning requires further refinement of the model to optimize parameters and adapt to new data.
Agradecimentos/Acknowledgements
--
Palavras-chave
UAV,RGB,Thermal,Deep learning,Convolutional neural networks,Water stress detection
Registos de financiamentos
| Referência de financiamento | Entidade Financiadora |
|---|---|
| 101083737 | União Europeia |
| 10.13039/501100015494 | Instituto de Telecomunicações |
| 46078 POCI01-0247-FEDER-046078 | FEDER |
Projetos Relacionados
Esta publicação é um output do(s) seguinte(s) projeto(s):
English