Ciência_Iscte
Comunicações
Descrição Detalhada da Comunicação
A Study on Dialog Act Recognition Using Character-Level Tokenization
Título Evento
The 18th International Conference on Artificial Intelligence: Methodology, Systems, Applications (AIMSA 2018)
Ano (publicação definitiva)
2018
Língua
Inglês
País
Bulgária
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Esta publicação não está indexada na Scopus
Google Scholar
Esta publicação não está indexada no Google Scholar
Esta publicação não está indexada no Overton
Abstract/Resumo
Dialog act recognition is an important step for dialog systems since it reveals the intention behind the uttered words. Most approaches on the task use word-level tokenization. In contrast, this paper explores the use of character-level tokenization. This is relevant since there is information at the sub-word level that is related to the function of the words and, thus, their intention. We also explore the use of different context windows around each token, which are able to capture important elements, such as affixes. Furthermore, we assess the importance of punctuation and capitalization. We performed experiments on both the Switchboard Dialog Act Corpus and the DIHANA Corpus. In both cases, the experiments not only show that character-level tokenization leads to better performance than the typical word-level approaches, but also that both approaches are able to capture complementary information. Thus, the best results are achieved by combining tokenization at both levels.
Agradecimentos/Acknowledgements
--
Palavras-chave
Dialog act recognition,Character-level,Switchboard dialog act corpus,DIHANA corpus,Multilinguality
Classificação Fields of Science and Technology
- Ciências da Computação e da Informação - Ciências Naturais
- Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
English