Artigo em revista científica Q1
An incremental local outlier detection method in the Data Stream
Haiqing Yao (Yao, H.); Xiuwen Fu (Fu, X.); Yongsheng Yang (Yang, Y.); Octavian Postolache (Postolache, O.);
Título Revista
Applied Sciences
Ano (publicação definitiva)
2018
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

N.º de citações: 19

(Última verificação: 2026-01-27 15:15)

Ver o registo na Web of Science®


: 1.2
Scopus

N.º de citações: 18

(Última verificação: 2026-01-25 14:29)

Ver o registo na Scopus


: 0.7
Google Scholar

N.º de citações: 29

(Última verificação: 2026-01-22 18:37)

Ver o registo no Google Scholar

Esta publicação não está indexada no Overton

Abstract/Resumo
Outlier detection has attracted a wide range of attention for its broad applications, such as fault diagnosis and intrusion detection, among which the outlier analysis in data streams with high uncertainty and infinity is more challenging. Recent major work of outlier detection has focused on principle research of the local outlier factor, and there are few studies on incremental updating strategies, which are vital to outlier detection in data streams. In this paper, a novel incremental local outlier detection approach is introduced to dynamically evaluate the local outlier in the data stream. An extended local neighborhood consisting of k nearest neighbors, reverse nearest neighbors and shared nearest neighbors is estimated for each data. The theoretical evidence of algorithm complexity for the insertion of new data and deletion of old data in the composite neighborhood shows that the amount of affected data in the incremental calculation is finite. Finally, experiments performed on both synthetic and real datasets verify its scalability and outlier detection accuracy. All results show that the proposed approach has comparable performance with state-of-the-art k nearest neighbor-based methods
Agradecimentos/Acknowledgements
--
Palavras-chave
Incremental algorithm,K nearest neighbor,Local outlier factor,Outlier detection
  • Ciências da Terra e do Ambiente - Ciências Naturais
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
  • Engenharia dos Materiais - Engenharia e Tecnologia
Registos de financiamentos
Referência de financiamento Entidade Financiadora
17595810300 Science and Technology Commission of Shanghai Municipality
UID/EEA/50008/2013 Fundação para a Ciência e a Tecnologia