Artigo em revista científica Q1
An optimization method to estimate models with store-level data: a case study
Graça Trindade (Trindade, G.); Ambrósio, J (Ambrósio, J);
Título Revista
European Journal of Operational Research
Ano (publicação definitiva)
2012
Língua
Inglês
País
Países Baixos (Holanda)
Mais Informação
Web of Science®

N.º de citações: 2

(Última verificação: 2024-11-23 23:29)

Ver o registo na Web of Science®


: 0.0
Scopus

N.º de citações: 2

(Última verificação: 2024-11-23 01:09)

Ver o registo na Scopus


: 0.0
Google Scholar

Esta publicação não está indexada no Google Scholar

Abstract/Resumo
The quality of the estimation of a latent segment model when only store-level aggregate data is available seems to be dependent on the computational methods selected and in particular on the optimization methodology used to obtain it. Following the stream of work that emphasizes the estimation of a segmentation structure with aggregate data, this work proposes an optimization method, among the deterministic optimization methods, that can provide estimates for segment characteristics as well as size, brand/product preferences and sensitivity to price and price promotion variation estimates that can be accommodated in dynamic models. It is shown that, among the gradient based optimization methods that were tested, the Sequential Quadratic Programming method (SQP) is the only that, for all scenarios tested for this type of problem, guarantees of reliability, precision and efficiency being robust, i.e., always able to deliver a solution. Therefore, the latent segment models can be estimated using the SQP method when only aggregate market data is available.
Agradecimentos/Acknowledgements
--
Palavras-chave
Marketing,Quadratic programming,Latent models,Segmentation,Market segmentation
  • Economia e Gestão - Ciências Sociais