Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Progress in Artificial Intelligence. EPIA 2013. Lecture Notes in Computer Science
Ano (publicação definitiva)
2013
Língua
Inglês
País
Alemanha
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Esta publicação não está indexada na Scopus
Google Scholar
Esta publicação não está indexada no Google Scholar
Abstract/Resumo
In data clustering, the problem of selecting the subset of most relevant features from the data has been an active research topic. Feature selection for clustering is a challenging task due to the absence of class labels for guiding the search for relevant features. Most methods proposed for this goal are focused on numerical data. In this work, we propose an approach for clustering and selecting categorical features simultaneously. We assume that the data originate from a finite mixture of multinomial distributions and implement an integrated expectation-maximization (EM) algorithm that estimates all the parameters of the model and selects the subset of relevant features simultaneously. The results obtained on synthetic data illustrate the performance of the proposed approach. An application to real data, referred to official statistics, shows its usefulness.
Agradecimentos/Acknowledgements
--
Palavras-chave
Cluster analysis,Finite mixtures models,EM algorithm,Feature selection,Categorical variables