Publication in conference proceedings
Distributive thermometer: A new unary encoding for weightless neural networks
Alan T. L. Bacellar (Bacellar, A. T. L.); Zachary Susskind (Susskind, Z.); Luis A. Q. Villon (Villon, L. A. Q. ); Igor D. S. Miranda (Miranda, I. D. S.); Leandro Santiago de Araújo (Araújo, L. S. de.); Diego Leonel Cadette Dutra (Dutra, D. L. C.); Maurício Breternitz (Breternitz Jr, M.); Lizy K. John (John, L. K.); Priscila Lima (Lima, P. M. V.); Felipe Maia Galvão França (França, F. M. G.); et al.
ESANN 2022 proceedings
Year (definitive publication)
2022
Language
English
Country
--
More Information
Web of Science®

This publication is not indexed in Web of Science®

Scopus

This publication is not indexed in Scopus

Google Scholar

Times Cited: 4

(Last checked: 2024-11-18 15:54)

View record in Google Scholar

Abstract
The binary encoding of real valued inputs is a crucial part of Weightless Neural Networks. The Linear Thermometer and its variations are the most prominent methods to determine binary encoding for input data but, as they make assumptions about the input distribution, the resulting encoding is sub-optimal and possibly wasteful when the assumption is incorrect. We propose a new thermometer approach that doesn’t require such assumptions. Our results show that it achieves similar or better accuracy when compared to a thermometer that correctly assumes the distribution, and accuracy gains up to 26.3% when other thermometer representations assume an unsound distribution.
Acknowledgements
--
Keywords
  • Computer and Information Sciences - Natural Sciences
Funding Records
Funding Reference Funding Entity
UIDB/04466/2020 Fundação para a Ciência e a Tecnologia
POCI-01-0247-FEDER-045912 Project FLOYD
UIDP/04466/2020 Fundação para a Ciência e a Tecnologia
Related Projects

This publication is an output of the following project(s):