Capítulo de livro
Enhancing Third-Party Logistics Efficiency: A Digital Approach to Transport Costing
Maria Teresa Pereira (Pereira, M.T.); Nuno Miguel Gabriel (Nuno Miguel Gabriel); Marisa João Guerra Pereira De Oliveira (Marisa João Guerra Pereira De Oliveira); Filipe R. Ramos (Ramos, F.R.); André Guimarães (André Guimarães);
Título Livro
Advances in Design, Simulation and Manufacturing VIII
Ano (publicação definitiva)
2025
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

N.º de citações: 0

(Última verificação: 2025-12-17 23:16)

Ver o registo na Scopus

Google Scholar

N.º de citações: 0

(Última verificação: 2025-12-19 16:27)

Ver o registo no Google Scholar

Esta publicação não está indexada no Overton

Abstract/Resumo
Over time, organizations and their supply chains have adapted to constant global change by increasingly adopting digital technologies for optimization, operational efficiency, and competitive advantage. These technologies, which are part of digital transformation, automate manual and repetitive processes, optimize operations and reduce human error. In this project, a decision support model was developed using Python to optimize the current manual costing processes involving 62 Excel spreadsheets and related calculations to achieve efficiency in the transportation processes of Company X, a third party logistics provider. The model was evaluated for accuracy, monetary savings, and time efficiency compared to the manual process. The Design Science Research Methodology (DSRM) was chosen to structure this work. The project produced positive results, with three scenarios (pessimistic, realistic and optimistic) showing annual monetary savings of over €6,000 and time efficiency of over 86%. Despite minor limitations, the project successfully applied digital transformation to transport optimization and demonstrated significant time and monetary benefits to the organization.
Agradecimentos/Acknowledgements
The authors acknowledge Fundação para a Ciência e a Tecnologia (FCT) for its financial support - UIDB/50022/2020 (LAETA Base Funding) and under the projects UID/00006/2025, UIDB/00006/2020 (DOI: https://doi.org/10.54499/UIDB/00006/2020)
Palavras-chave
Supply Chains,Digital Transformation,Industry 4.0,Process Digitization,Decision Support Model,Automation
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UIDB/50022/2020 FCT – Fundação para a Ciência e a Tecnologia
UID/00006/2025 FCT – Fundação para a Ciência e a Tecnologia
UIDB/00006/2020 FCT – Fundação para a Ciência e a Tecnologia