Artigo em revista científica Q2
Evolution of swarm robotics systems with novelty search
Jorge Gomes (Gomes, J.); Paulo Urbano (Urbano, P.); Anders Christensen (Christensen, A. L.);
Título Revista
Swarm Intelligence
Ano (publicação definitiva)
2013
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 97

(Última verificação: 2024-07-03 13:03)

Ver o registo na Web of Science®


: 3.6
Scopus

N.º de citações: 101

(Última verificação: 2024-07-04 14:21)

Ver o registo na Scopus


: 2.6
Google Scholar

N.º de citações: 176

(Última verificação: 2024-07-04 07:39)

Ver o registo no Google Scholar

Abstract/Resumo
Novelty search is a recent artificial evolution technique that challenges traditional evolutionary approaches. In novelty search, solutions are rewarded based on their novelty, rather than their quality with respect to a predefined objective. The lack of a predefined objective precludes premature convergence caused by a deceptive fitness function. In this paper, we apply novelty search combined with NEAT to the evolution of neural controllers for homogeneous swarms of robots. Our empirical study is conducted in simulation, and we use a common swarm robotics task—aggregation, and a more challenging task—sharing of an energy recharging station. Our results show that novelty search is unaffected by deception, is notably effective in bootstrapping evolution, can find solutions with lower complexity than fitness-based evolution, and can find a broad diversity of solutions for the same task. Even in non-deceptive setups, novelty search achieves solution qualities similar to those obtained in traditional fitness-based evolution. Our study also encompasses variants of novelty search that work in concert with fitness-based evolution to combine the exploratory character of novelty search with the exploitatory character of objective-based evolution. We show that these variants can further improve the performance of novelty search. Overall, our study shows that novelty search is a promising alternative for the evolution of controllers for robotic swarms.
Agradecimentos/Acknowledgements
--
Palavras-chave
Evolutionary robotics,Neuroevolution,Swarm robotics,Novelty search,NEAT,Behavioural diversity,Deception
  • Ciências da Computação e da Informação - Ciências Naturais
  • Engenharia Eletrotécnica, Eletrónica e Informática - Engenharia e Tecnologia
Registos de financiamentos
Referência de financiamento Entidade Financiadora
PTDC/EEA-CRO/104658/2008 Fundação para a Ciência e a Tecnologia
SFRH/BD/89095/2012 Fundação para a Ciência e a Tecnologia
PEst-OE/EEI/LA0008/2011 Fundação para a Ciência e a Tecnologia