Publicação em atas de evento científico
Evolving controllers for robots with multimodal locomotion
Rita Ramos (Ramos, R.); Miguel Duarte (Duarte, M.); Sancho Moura Oliveira (Oliveira, S. M.); Anders Christensen (Christensen, A. L.);
From Animals to Animats 14. Lecture Notes in Computer Science
Ano (publicação definitiva)
2016
Língua
Inglês
País
Alemanha
Mais Informação
Web of Science®

N.º de citações: 1

(Última verificação: 2024-12-04 14:56)

Ver o registo na Web of Science®

Scopus

Esta publicação não está indexada na Scopus

Google Scholar

N.º de citações: 2

(Última verificação: 2024-12-01 11:42)

Ver o registo no Google Scholar

Abstract/Resumo
Animals have inspired numerous studies on robot locomotion, but the problem of how autonomous robots can learn to take advantage of multimodal locomotion remains largely unexplored. In this paper, we study how a robot with two different means of locomotion can effective learn when to use each one based only on the limited information it can obtain through its onboard sensors. We conduct a series of simulation-based experiments using a task where a wheeled robot capable of jumping has to navigate to a target destination as quickly as possible in environments containing obstacles. We apply evolutionary techniques to synthesize neural controllers for the robot, and we analyze the evolved behaviors. The results show that the robot succeeds in learning when to drive and when to jump. The results also show that, compared with unimodal locomotion, multimodal locomotion allows for simpler and higher performing behaviors to evolve.
Agradecimentos/Acknowledgements
--
Palavras-chave
Evolutionary robotics,Multimodal locomotion,Navigation task
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/EEA/50008/2013 Fundação para a Ciência e a Tecnologia
Projetos Relacionados

Esta publicação é um output do(s) seguinte(s) projeto(s):