Artigo em revista científica Q2
Extracting clinical knowledge from electronic medical records
Manuel Lamy (Lamy, M.); Rúben Pereira (Pereira, R.); Joao C Ferreira or Joao Ferreira (Ferreira, J. C.); Fernando Melo (Melo, F.); Iria Velez (Velez, I.);
Título Revista
IAENG International Journal of Computer Science
Ano (publicação definitiva)
2018
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

N.º de citações: 7

(Última verificação: 2024-11-21 22:52)

Ver o registo na Scopus


: 0.7
Google Scholar

N.º de citações: 13

(Última verificação: 2024-11-22 23:46)

Ver o registo no Google Scholar

Abstract/Resumo
As the adoption of Electronic Medical Records (EMRs) rises in the healthcare institutions, these resources' importance increases because of the clinical information they contain about patients. However, the unstructured information in the form of clinical narratives present in those records, makes it hard to extract and structure useful clinical knowledge. This unstructured information limits the potential of the EMRs, because the clinical information these records contain can be used to perform important tasks inside healthcare institutions such as searching, summarization, decision support and statistical analysis, as well as be used to support management decisions or serve for research. These tasks can only be done if the unstructured clinical information from the narratives is properly extracted, structured and transformed in clinical knowledge. Usually, this extraction is made manually by healthcare practitioners, which is not efficient and is error-prone. This research uses Natural Language Processing (NLP) and Information Extraction (IE) techniques, in order to develop a pipeline system that can extract clinical knowledge from unstructured clinical information present in Portuguese EMRs, in an automated way, in order to help EMRs to fulfil their potential.
Agradecimentos/Acknowledgements
--
Palavras-chave
Information extraction,Text mining,Knowledge extraction,Natural language processing
  • Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/MULTI/0446/2013 Fundação para a Ciência e a Tecnologia