Artigo em revista científica Q2
Feature selection for clustering categorical data with an embedded modeling approach
Cláudia Silvestre (Silvestre, C.); Margarida G. M. S. Cardoso (Cardoso, M. G. M. S.); Mário A. T. Figueiredo (Figueiredo, M.);
Título Revista
Expert Systems
Ano (publicação definitiva)
2015
Língua
Inglês
País
Estados Unidos da América
Mais Informação
Web of Science®

N.º de citações: 15

(Última verificação: 2024-11-20 12:53)

Ver o registo na Web of Science®


: 0.8
Scopus

N.º de citações: 20

(Última verificação: 2024-11-15 06:30)

Ver o registo na Scopus


: 0.9
Google Scholar

Esta publicação não está indexada no Google Scholar

Abstract/Resumo
Research on the problem of feature selection for clustering continues to develop. This is a challenging task, mainly due to the absence of class labels to guide the search for relevant features. Categorical feature selection for clustering has rarely been addressed in the literature, with most of the proposed approaches having focused on numerical data. In this work, we propose an approach to simultaneously cluster categorical data and select a subset of relevant features. Our approach is based on a modification of a finite mixture model (of multinomial distributions), where a set of latent variables indicate the relevance of each feature. To estimate the model parameters, we implement a variant of the expectation-maximization algorithm that simultaneously selects the subset of relevant features, using a minimum message length criterion. The proposed approach compares favourably with two baseline methods: a filter based on an entropy measure and a wrapper based on mutual information. The results obtained on synthetic data illustrate the ability of the proposed expectation-maximization method to recover ground truth. An application to real data, referred to official statistics, shows its usefulness.
Agradecimentos/Acknowledgements
--
Palavras-chave
Cluster analysis,Finite mixtures models,EM algorithm,Feature selection,Categorical features
  • Ciências da Computação e da Informação - Ciências Naturais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/GES/00315/2013 Fundação para a Ciência e a Tecnologia