Artigo em revista científica
Identifying small market segments with mixture regression models
Ana Brochado (Brochado, A.); Francisco Vitorino Martins (Martins, F. V.);
Título Revista
International Journal of Latest Trends in Finance and Economics Sciences
Ano (publicação definitiva)
2014
Língua
Inglês
País
Reino Unido
Mais Informação
Web of Science®

Esta publicação não está indexada na Web of Science®

Scopus

Esta publicação não está indexada na Scopus

Google Scholar

N.º de citações: 5

(Última verificação: 2024-11-18 01:13)

Ver o registo no Google Scholar

Abstract/Resumo
The purpose of this work is to determine howwell criteria designed to help the selection of theadequate number of market segments perform inrecovering small niche market segments, in mixtureregressions of normal data. As in real world data thetrue number of market segments is unknown, theresults of this study are based on experimental data.The simulation experiment compares 27 segmentretention criteria, comprising 14 information criteriaand 13 classification-based criteria. The results revealthat AIC3, AIC4, HQ, BIC, CAIC, ICLBIC andICOMPLBIC are the best criteria in recovering smallniche segments and encourage its use.
Agradecimentos/Acknowledgements
--
Palavras-chave
Market segmentation, Niche markets, Mixture regression models, Experimental design