Ciência-IUL
Publicações
Descrição Detalhada da Publicação
Título Revista
Computational Statistics and Data Analysis
Ano (publicação definitiva)
2014
Língua
Inglês
País
Países Baixos (Holanda)
Mais Informação
Web of Science®
Scopus
Google Scholar
Abstract/Resumo
Model averaging (MA) estimators in the linear instrumental variables regression framework are considered. The obtaining of weights for averaging across individual estimates by direct smoothing of selection criteria arising from the estimation stage is proposed. This is particularly relevant in applications in which there is a large number of candidate instruments and, therefore, a considerable number of instrument sets arising from different combinations of the available instruments. The asymptotic properties of the estimator are derived under homoskedastic and heteroskedastic errors. A simple Monte Carlo study contrasts the performance of MA procedures with existing instrument selection procedures, showing that MA estimators compare very favorably in many relevant setups. Finally, this method is illustrated with an empirical application to returns to education.
Agradecimentos/Acknowledgements
--
Palavras-chave
Instrumental variables; Model selection; Model averaging; Model screening; Returns to education
Classificação Fields of Science and Technology
- Matemáticas - Ciências Naturais
- Ciências da Computação e da Informação - Ciências Naturais
Projetos Relacionados
Esta publicação é um output do(s) seguinte(s) projeto(s):