Ciência_Iscte
Publicações
Descrição Detalhada da Publicação
Memory Efficient Weightless Neural Network using Bloom Filter
27 th European Symposium on Artificial Neural Networks, Computational Intelligence and Machine Learning
Ano (publicação definitiva)
2019
Língua
Inglês
País
Bélgica
Mais Informação
Web of Science®
Esta publicação não está indexada na Web of Science®
Scopus
Google Scholar
Esta publicação não está indexada no Overton
Abstract/Resumo
Weightless Neural Networks are Artificial Neural Networks
based on RAM memory broadly explored as solution for pattern recog-
nition applications. Due to its memory approach, it can easily be im-
plemented in hardware and software providing efficient learning mecha-
nism. Unfortunately, the straightforward implementation requires a large
amount of memory resources making its adoption impracticable on mem-
ory constraint systems. In this paper, we propose a new model of Weight-
less Neural Network which utilizes Bloom Filters to implement RAM
nodes. By using Bloom Filters, the memory resources are widely re-
duced allowing false positives entries. The experiment results show that
our model using Bloom Filters achieves competitive accuracy, training
time and testing time, consuming up to 6 order of magnitude less mem-
ory resources in comparison with the standard Weightless Neural Network
model.
Agradecimentos/Acknowledgements
--
Palavras-chave
Classificação Fields of Science and Technology
- Ciências da Computação e da Informação - Ciências Naturais
English