Artigo em revista científica Q2
Merging data diversity of clinical medical records to improve effectiveness
Berit I. Helgheim (Helgheim, B. I.); Rui Maia (Maia, R.); Joao C Ferreira or Joao Ferreira (Ferreira, J. C.); Ana Martins (Martins, A. L.);
Título Revista
International Journal of Environmental Research and Public Health
Ano (publicação definitiva)
2019
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

N.º de citações: 8

(Última verificação: 2024-12-17 03:26)

Ver o registo na Web of Science®


: 1.0
Scopus

N.º de citações: 9

(Última verificação: 2024-12-13 05:33)

Ver o registo na Scopus


: 0.5
Google Scholar

N.º de citações: 20

(Última verificação: 2024-12-16 23:53)

Ver o registo no Google Scholar

Abstract/Resumo
Medicine is a knowledge area continuously experiencing changes. Every day, discoveries and procedures are tested with the goal of providing improved service and quality of life to patients. With the evolution of computer science, multiple areas experienced an increase in productivity with the implementation of new technical solutions. Medicine is no exception. Providing healthcare services in the future will involve the storage and manipulation of large volumes of data (big data) from medical records, requiring the integration of different data sources, for a multitude of purposes, such as prediction, prevention, personalization, participation, and becoming digital. Data integration and data sharing will be essential to achieve these goals. Our work focuses on the development of a framework process for the integration of data from different sources to increase its usability potential. We integrated data from an internal hospital database, external data, and also structured data resulting from natural language processing (NPL) applied to electronic medical records. An extract-transform and load (ETL) process was used to merge different data sources into a single one, allowing more effective use of these data and, eventually, contributing to more efficient use of the available resources.
Agradecimentos/Acknowledgements
--
Palavras-chave
Big data,Data,ETL,Framework,Integration,Knowledge,Medical records,Extract-transform and load
  • Ciências da Terra e do Ambiente - Ciências Naturais
  • Ciências Biológicas - Ciências Naturais
  • Ciências da Saúde - Ciências Médicas
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UID/GES/00315/2013 Fundação para a Ciência e a Tecnologia
UID/MULTI/0446/2013 Fundação para a Ciência e a Tecnologia