Artigo em revista científica Q1
Modelling motor insurance claim frequency and severity using gradient boosting
Carina Clemente (Clemente, C.); Gracinda R. Guerreiro (Guerreiro, G. R.); Jorge Miguel Bravo (Bravo, J.);
Título Revista
Risks
Ano (publicação definitiva)
2023
Língua
Inglês
País
Suíça
Mais Informação
Web of Science®

N.º de citações: 11

(Última verificação: 2025-12-22 17:15)

Ver o registo na Web of Science®


: 3.1
Scopus

N.º de citações: 16

(Última verificação: 2025-12-20 21:21)

Ver o registo na Scopus


: 3.0
Google Scholar

N.º de citações: 26

(Última verificação: 2025-12-18 03:08)

Ver o registo no Google Scholar

Esta publicação não está indexada no Overton

Abstract/Resumo
Modelling claim frequency and claim severity are topics of great interest in property-casualty insurance for supporting underwriting, ratemaking, and reserving actuarial decisions. Standard Generalized Linear Models (GLM) frequency–severity models assume a linear relationship between a function of the response variable and the predictors, independence between the claim frequency and severity, and assign full credibility to the data. To overcome some of these restrictions, this paper investigates the predictive performance of Gradient Boosting with decision trees as base learners to model the claim frequency and the claim severity distributions of an auto insurance big dataset and compare it with that obtained using a standard GLM model. The out-of-sample performance measure results show that the predictive performance of the Gradient Boosting Model (GBM) is superior to the standard GLM model in the Poisson claim frequency model. Differently, in the claim severity model, the classical GLM outperformed the Gradient Boosting Model. The findings suggest that gradient boost models can capture the non-linear relation between the response variable and feature variables and their complex interactions and thus are a valuable tool for the insurer in feature engineering and the development of a data-driven approach to risk management and insurance.
Agradecimentos/Acknowledgements
--
Palavras-chave
Gradient boosting,Non-life insurance pricing,Expert systems,Predictive modelling,Risk management,Actuarial science
  • Economia e Gestão - Ciências Sociais
Registos de financiamentos
Referência de financiamento Entidade Financiadora
UIDB/00315/2020 Fundação para a Ciência e a Tecnologia
UIDP/00297/2020 Fundação para a Ciência e a Tecnologia
UIDB/00297/2020 Fundação para a Ciência e a Tecnologia
UIDB/04152/2020 Fundação para a Ciência e a Tecnologia